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Abstract
This paper presents a baseline-free, model-driven, statistical damage detection and imaging framework for guided
waves measured from partial (i.e., non-dense) wavefield scans. Wavefield analysis is an effective non-contact technique
for nondestructive evaluation. Yet, there are several limitations to practically implementing wavefield methods. These
limitations include slow data acquisition and a lack of statistical reliability. Our approach addresses both of these
challenges. We use sparse wavenumber analysis, sparse wavenumber synthesis, and data-fitting optimization to
accurately model damage-free wavefield data. We then combine this model with matched field processing to image
damage from a small number of partial wavefield measurements. We further derive a hypothesis test based on extreme
value theory to statistically detect damage. We test our framework with Lamb wave measurements from a steel plate.
With 70 experimental wavefield measurements, we achieve an empirical probability of damage detection of more than
98%, an empirical probability of false alarm of less than 0.17%, and an accurate image of the damage.
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Introduction

In the last decade, the acquisition and analysis of the full, or
dense, wavefields (generated using bulk or guided waves) has
garnered significant interest for non-contact nondestructive
evaluation. Researchers use full wavefield analysis to study
wave propagation in structures and detect damage. Full
wavefield analysis has been successfully applied to both
isotropic metals1–4 and anisotropic composite materials5–7.
These studies have presented several methods for detecting
and locating damage, such as through local energy5 or
local wavenumber6 computation. A significant advantage of
these full wavefield analysis methods is that they do not
require prior baseline (damage-free) data and can resolve
small features of damage with a high spatial resolution
wavefield. Yet while full wavefield analysis provides
significant benefits, it has two significant challenges: slow
data acquisition as well as a need for statistical reliability
and better data analysis8.

Wavefields are often generated with a piezoelectric
transducer and then measured at scanning locations with a
laser doppler vibrometer (LDV)1. Alternatively, wavefields
can be generated at scanning locations with a pulse laser
and then measured from a pizeoelectric transducer9,10. For
LDV scans, many measurements are often acquired at each
location and averaged to overcome poor signal-to-noise
ratios. As a result, the scanning process can take significant
time. For example, densely scanning a 10 cm by 10 cm region
can take more than 12 hours. To test larger structures, much
faster processes are necessary.

Researchers have proposed several methods to improve
the speed of wavefield acquisition. These include methods
based on remote beamforming11, which initially determine
local regions that contain damage before performing a full
wavefield acquisition. This approach significantly reduces
the scan area but has limited resolution12 and no statistical
reliability. Other methods use time and spatial information
to predict, or interpolate, the wavefield at the locations
not sampled. These algorithms use partial wavefields that
can be acquired at a rapid rate. Many of these methods
utilize algorithms from compressive sensing7,13 to perform
the interpolation. While they can accurately interpolate
wavefields, they are currently limited in their ability to
reliably detect, isolate, and locate weak damage wavefields.

In addition, statistically reliable approaches for wavefield
analysis and guided wave analysis are immature. While many
guided wave localization techniques are based on statistical
principles and methods, these statistical principles are often
not rigorously applied. For example, delay-and-sum14 and
matched field processing15 are both fundamentally based
on the statistical matched filter16,17. Similarly, guided wave
methods for maximum likelihood estimation18 and Bayesian
sensor optimization19 are directly derived from statistical
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assumptions. While based on statistical approaches, these
methods currently do not provide thresholds or hypothesis
tests that ensure statistical significance for their applications.

To improve acquisition time and provide statistical
reliability, this paper introduces a statistical detection and
imaging framework that extends and improves partial
wavefield analysis methods. Our framework uses sparse
wavenumber analysis20 to create a damage-free model of the
wavefield. We optimally fit this model to measured data to
remove errors and uncertainties. We then subtract the fitted,
damage-free model from our data to isolate the damage
signatures. An image of the damage is then generated with
data-driven matched field processing15. We also introduce
a statistical test based on extreme value theory21 to ensure
statistically significant damage detection and imaging.

Compared with previous work, our approach provides
several contributions. Specifically, sparse wavenumber
analysis and sparse wavenumber synthesis, which are
typically used for localization15, are now applied to create
a damage-free baseline from data containing damage. The
scale transform, which is typically used for temperature
compensation22, is now applied with a shift estimator
and amplitude estimator to correct for wavefield variations
between our data and the synthesized baseline. In addition,
we present a new constant rate of false alarm matched
field processor as well as a statistical analysis framework
for defining statistically significant values in a localization
image. These methods improve the scan time of current
wavefield imaging, allow us to account for effects of local
damage on global wavefields, and provide a statistical
method for distinguishing damage from non-damage.

Similar to previous work with phased arrays23, our
framework can be used in conjunction with full wavefield
imaging. That is, a partial wavefield may be used to rapidly
detect damage as well as determine statistically significant
regions of concern across the structure. These regions may
then be further assessed using a dense, full wavefield scan.
The dense scan can resolve small features of the damage.

We test our method with a 10 cm by 10 cm dense wavefield
of Lamb waves from a steel plate with a circular 2 mm
diameter half-thickness notch at its center. From the dense
wavefield, we perform a Monte Carlo analysis with randomly
chosen locations that form a set of 600 partial wavefields.
The Monte Carlo analysis is repeated with partial wavefields
containing 10 measurements to 170 measurements.

With 40 wavefield measurements (1000 times fewer
measurements than in the original dense wavefield), we
achieve an average localization error below 2 mm (the
diameter of the notch). With 70 wavefield measurements
(more than 500 times fewer measurements than in
the original dense wavefield), we achieve an empirical
probability of detection of greater than 98%, an empirical
probability of false alarm of less than 0.17%, and identify a
5 mm by 2.5 mm statistically significant region of the plate
that contains the 2 mm diameter notch. This small region can
then be rapidly evaluated with a dense, full wavefield scan.

Outline
This paper is organized as follows. First, we discuss
the challenges with modeling wavefields due to velocity
uncertainty, weak anisotropy, and speckle. We then discuss

how we achieve accurate wavefield models through sparse
wavenumber analysis and several optimization strategies to
reduce the previously discussed errors. These methods allow
us to analyze wavefields without prior baseline data. We then
describe our statistical framework that integrates matched
field processing and extreme value theory for the statistical
detection and imaging of damage. We then describe our
experimental setup with which we test our framework, and
we present the results from these experiments.

Wavefield Modeling Challenges
In this paper, we focus on analyzing partial wavefield scans.
We define the density of wavefields according to pixel
spacing ∆s and the shortest wavelength in the data λmin. We
define a partial wavefield to satisfy

∆s > λN = λmin/2 . (1)

That is, a partial wavefield does not satisfy the spatial
Nyquist criteria. We refer to λN as the Nyquist wavelength.

Figure 1 shows the local wavefield energy (where
λmin ≈ 5mm and the wavelength with the largest amplitude
is ≈ 10mm) from a full/dense scan (∆s < λN ), a
critically sampled scan (∆s ≈ λN ), and a partial scan (∆s >
λN ). The local energy displays the squared sum of each
measurement over time. This is a common approach for
locating damage from full wavefields5.

In the 40, 000 measurement densely sampled scan (∆s =
0.2λN ), the damage (centered in the frame) is clearly visible.
In the 1600 measurement critically sampled scan (∆s =
λN ), the damage is visible but the resolution is poor. In the
100 measurement partially sampled scan (∆s = 4λN ), the
damage is not visible. The partial scan requires 400 times
fewer measurements than the dense scan and 16 times
fewer measurements than the critically sampled scan. This
translates to large data acquisition speed improvements. In
this paper, we focus on processing similar partial wavefields.

We distinguish partial wavefield methods from sparse
array methods based on two characteristics. First, sparse
arrays typically imply an in situ system with multiple sensors
that use baseline signals to locate damage. In contrast,
partial wavefields do not use in situ systems and do not
require baseline measurements. Second, sparse arrays are
often defined by the number of sensors on the structure. In
contrast, a partial wavefield is better defined by the average
density or average spacing of the scan points rather than
the total number. In general, the benefits and limitations for
partial wavefields have not been thoroughly explored in the
literature.

To isolate damage in a partial wavefield without a
prior damage-free baseline, we create a damage-free sparse
wavenumber model20,24 of Lamb waves. Note that, as
is common with modeling, our initial model does not
perfectly match the experimental measurements. This is due
to many small uncertainties regarding our knowledge of
the wavefield. While these uncertainties may not be visibly
significant, small differences between our model wavefield
and the true wavefield can hide damage signatures that are
often 100 times weaker than the direct wavefield. For this
reason, we incorporate several optimization techniques to
better fit our model with the data.
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Figure 1. Illustration of the spatial energy of one wavefield with three levels of spatial sampling according to the pixel spacing ∆s
and minimum wavelength λmin of the waves. For this wavefield, λN ≈ 2.5 mm. (a) Densely sampled wavefield, where ∆s < λN .
(b) Critically sampled wavefield, where ∆s ≈ λN . (c) Partially sampled wavefield, where ∆s > λN . Our work focuses on partially
sampled wavefields, when the spatial energy wavefield is too undersampled to reliably detect damage.
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Figure 2. Illustration of the effects of velocity error on guided wave signals. (a) Two simulated guided waves signal where the
light-colored signal has a 1% slower velocity than the dark-colored signal. (b) The difference of the two signals, which has a
maximum amplitude similar to the original data.

In this section, we discuss sources of uncertainty and
modeling error that we observe in the experimental data.
We discuss modeling errors in wave velocity, amplitude,
anisotropy, and random speckle. In general, these differences
are caused by natural characteristics of the material that we
cannot reliably account for in modeling.

Velocity and Amplitude Uncertainty
Velocity and amplitude uncertainty is common in ultrasonic
guided wave data analysis20,25. Velocity and amplitude
both vary with material properties26, temperature27, plate
thickness28, and other factors. Since guided wave velocity
and amplitude is frequency-dependent (i.e., dispersive),
the errors will also vary with frequency. Velocity errors
are known to create significant differences in wavefields.
Figure 2(a) illustrates portions of two anti-symmetric Lamb
wave modes and their subtraction. Both measurements travel
a distance of 1.00 m but have a 1% difference in velocity.
As shown in Figure 2(b), the difference has almost the same
maximum amplitude as the measurements.

In the next section, we learn the frequency-dependent
phase velocity characteristics of our experimental Lamb
wave data through sparse wavenumber analysis20. This
information is incorporated into our wavefield model.

Anisotropy
When modeling guided waves in metal, we often assume
the wavefield to be isotropic. However, weak anisotropy

can be created by the natural grain structure of the metal29

and by the direction of the rolling process on the metal
sheets30. As a result, certain wave directions will travel at
slightly different speeds. In addition, when using lasers to
excite or measure wavefields, anisotropy can be artificially
created by the measurement system. If there is a small angle
deviation away from normal between the plate and laser, the
measurements will be taken at slightly different locations
than intended. When processing the data, if the measurement
grid is not adjusted for this error, the waves will appear to
have weak anisotropic behavior.

Weak anisotropy is difficult to visually identify but can
create significant differences in data. Figure 3 illustrates
weak anisotropy in a measured wavefield from a steel plate.
The thin circular line represents a perfect circle with the
center at a transducer. When overlaid on the measured
wavefield, we see a close, but imperfect resemblance. The
perfect circle is closer to the wavefield zero crossing at a
45 degree angle from the transducer. Yet, near the edges of
scanning area, the perfect circle is closer to the crest of the
wavefield. Much like small errors in velocity, this can create
large errors in subtraction.

In the next section, we account for anisotropy error by
fitting our model with each measurement. Specifically, we
find the optimal shifts and the optimal time-stretches that best
match the model data to our measurements. We then adjust
our model accordingly.
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Figure 3. Illustration of weak anisotropy in experimental data. (a) Dense wavefield superimposed with a circle centered around
the transmitter location at coordinates (−70 mm, 170 mm). (b) Bottom-left region of the circle, where the circle is near the crest of
the wave. (c) Center region of the circle, where the circle is at the zero-crossing of the wave.

Speckle
Speckle noise refers to effects of a random rough or granular
structure that diffuses waves and creates interference in
data31. At the image or pixel level, this causes a random
lightening and darkening of the pixel values across the
wavefield. For a single time measurement, this can cause
small amplitude variations or small shifts in the time-domain.
Figure 4 illustrates speckle noise in a wavefield from a steel
plate. When we magnify the experimental wavefield, the
waves show a weak granular, speckle noise pattern rather
than a smooth transition between the crests and troughs of
the wave. Like the other sources of error, this effect is weak
but can cause significant errors in model subtraction.

In the next section, we account for speckle error by fitting
our model to each measurement, similar to our approach for
anisotropy. In addition to determining the optimal shift and
time-stretch behavior, we optimally re-scale local amplitudes
of each measurement to match with our model.

Other Uncertainties
While not prevalent in the data presented in this paper,
there are many other possible sources of uncertainty in
wavefield data. These uncertainties include source direc-
tionality32, multiple-scattering33, mechanical stresses34, vis-
coelastic attenuation35, and others. These uncertainties
create direction-dependent, inhomogeneous amplitude and
velocity variations and can potentially create additional
wavefronts in the data. The methodology we describe in the
following section can partially address these uncertainties,
but additional future research is necessary to optimally align
data with these and other complex effects.

Methodology: Isolating Damage Signatures
To isolate damage signatures with minimal error between
our model and the experimental data, we apply several
optimization techniques. Our methodology has six steps:

1. Extract global dispersion curves from the data
2. Create a model from these dispersion curves
3. Optimally shift-align the model and data
4. Optimally stretch-align the model and data
5. Optimally amplitude-align the model and data
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Figure 4. Illustration of speckle in a measured wavefield.
(a) Experimental wavefield with speckle (i.e., lightening and
darkening of the pixels). (b) Simulated wavefield without
speckle.

6. Subtract the model from the data

We describe each step in the following subsections.
Figure 5 summarizes the sparse wavenumber analysis and

optimization strategies described in this section. We assume
our data consists of M partial wavefield measurements and
Q frequencies. In this block diagram, X is an M ×Q matrix
of frequency-domain measurements xm (where 1 ≤ m ≤
M ). Each measurement represents one pixel in the wavefield,
although the measurements (or pixels) do not have to be
spatially arranged in a uniform grid.

The matrix V̂ is a sparse N ×Q dispersion curve
matrix with N chosen wavenumbers. The vector x̂m is
our unaligned, undamaged model for measurement m.
The vector x̂

(a)
m is the aligned, undamaged model for

measurement m. The vector zm is the model-subtracted data
that we use to detect and locate damage.

Step 1: Compute Global Dispersion Curves
Sparse wavenumber analysis assumes our Lamb wave
measurements fit a general, far-field model defined by20

X(ω) =
∑
n

√
1

kn(ω)r
Gn(ω) e

−jkn(ω)r . (2)
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Figure 5. Illustration of our data alignment process for partial wavefield measurement xm.

In (2), ω represents angular frequency, r represents the
distance traveled by the wave from its source, and kn(ω)
represents the propagating wavenumber as a function of
frequency ω and mode n. Each mode exhibits geometric
spreading (i.e., 1/

√
kn(ω)r) and a frequency response (i.e.,

Gn(ω)). The wavenumber function kn(ω) is often referred to
as the dispersion curves of the medium. Overall, this model
assumes Lamb waves travel as a sum of multiple isotropic
wave modes and each mode is modeled as a plane wave with
a frequency-dependent and mode-dependent wavenumber
kn(ω). Note that the wavenumber is inversely proportional
to the wave’s phase velocity.

Sparse wavenumber analysis utilizes (2) expressed in a
linear algebraic representation

X = ΦV . (3)

In this expression, X is an M ×Q matrix of frequency-
domain measurements, V is a sparse N ×Q dispersion
curve matrix, and Φ is an M ×N propagation matrix such
that

X = [Xm(ωq)]mq (4)

V = [Gn(ωq)]nq (5)

Φ =

[√
1

κnrm
e−jκnrm

]
mn

. (6)

The function Xm(ωq) represents our frequency-domain
Lamb wave data across 1 ≤ m ≤ M measurements and
1 ≤ q ≤ Q frequencies. The variable κn is a discretization
of the wavenumber domain across 1 ≤ n ≤ N user-chosen
wavenumbers. The function Gn(ωq) is the dispersion curve
in frequency-wavenumber space for 1 ≤ n ≤ N wavenum-
bers and 1 ≤ q ≤ Q frequencies. Figure 6 illustrates values
of the V matrix that correspond to the dispersion curves of
Lamb waves.

Since V has few non-zero values, we use algorithms
from compressive sensing36, such as orthogonal matching
pursuit37, to recover V from knowledge of X and Φ.
This process is known as sparse wavenumber analysis.
The detailed process of implementing sparse wavenumber
analysis has been discussed extensively in prior work20,38.
We refer to our recovered dispersion curves as V̂.

Step 2: Construct Model
Once the sparse wavenumber analysis dispersion curve
estimate V̂ is known, we use it to re-solve

X̂ = ΦV̂ . (7)
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Figure 6. Frequency-wavenumber (i.e., dispersion curves)
representation of our experimental wavefield. Frequencies
below 100 kHz do not exhibit waves with significant strength.

This process is known as sparse wavenumber denoising (or,
more generally, sparse wavenumber synthesis)20. We refer
to it as denoising because the process cannot reconstruct
information (e.g., noise, damage signatures, anisotropy, etc.)
that are not represented in the model in (2). As a result,
any information created by damage is not reconstructed in
X̂, and X̂ represents a damage-free model of X. Note that
extensive damage and noise can degrade the performance
of this process, but this degradation can be reduced by
increasing the number of measurements38.

Our model X̂ possesses the velocities and amplitudes
defined by the dispersion curves in V̂. Note that to synthesize
a baseline signal that can successfully isolate damage
signatures requires extremely accurate dispersion curves. In
general, theoretical dispersion curves from the Rayleigh-
Lamb equation28 are not sufficient for this purpose due
to significant uncertainties. In particular, the frequency-
dependent complex amplitudes for each wave mode are
heavily influenced by the sensors and their effects are
generally unknown without measuring them.

As a result, experimentally obtained dispersion curves
are essential to our method. Even so, additional errors and
uncertainties due to anisotropy and speckle, which dispersion
curves do not characterize, may cause our model X̂ to not
perfectly match our data X. Therefore, we apply additional
optimizations to further align our model and data.

Step 3: Realign Data (Shift)

Let x̂m(t) and X̂m(ω) be the time-domain and frequency-
domain representations of our model signal m (i.e., X̂m(ω)

represents the m-th column X̂). Let xm(t) and Xm(ω) be
the corresponding signals from our measured data set. In this
step, we shift-align these two signals.
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Specifically, we shift our model x̂m(t− τ) by some time
delay τ such that

τ = argmin
τ

∫ ∞

−∞
|xm(t)− x̂m(t− τ)|2 dt , (8)

or equivalently,

τ = argmin
τ

∫ ∞

−∞

∣∣∣Xm(ω)− X̂m(ω)e−jτω
∣∣∣2 dt . (9)

The optimal shift τ is determined by solving this least
squares optimization in the frequency domain. We solve the
problem in the frequency domain since τ in (9) can be any
real number and is not restricted to an integer sample as in
(8). This optimization problem is not generally convex (i.e.,
it may have local minima). However, since the model and
data are very similar, the global minimum solution is likely
to be locally convex around τ = 0. After τ is determined, the
model signal is shifted accordingly. This is repeated for each
model signal and data signal pair m.

Note that the shift alignment is intended to adjust for small
shifts between the data and the model. Therefore, to remove
the possibility of large, erroneous shifts, we recommend the
optimization be constrained to only consider shifts smaller
than a quarter of a period. In our setup with a 250 kHz
center frequency signal and a 5 MHz sampling rate, this is
equivalent to approximately constraining τ to be between
−0.001 ms to 0.001 ms, or −5 to 5 samples. In our results,
all of the optimal shift estimates are less than 0.0005 ms, or
2.5 samples.

Step 4: Realign Data (Stretch)
Optimal time shifting compensates for errors due to
anisotropy and speckle. Yet, an error in velocity or distance
for guided wave signals is often also represented by a time-
stretch22,39. Therefore, to further align our model and data,
we optimally time-stretch our model x̂m(αt− τ) by some
stretching factor α such that

α = argmin
α

∫ ∞

−∞
|xm(t)− x̂m(αt− τ)|2 dt . (10)

There are a few common approaches for performing this
optimization. Baseline signal stretch40 aligns these signals
by stretching x̂m(t− τ) by variety of α factors and then
finding the α that minimizes the error. The scale transform
approach22 performs a similar optimization in the scale
domain, which allows the algorithm to be much more
computationally efficient.

The scale transform solves a slightly different optimiza-
tion than in (10) such that xm(t) and x̂m(αt− τ) are energy
normalized22. After α is determined, the model signal is
stretched accordingly. This is repeated for each model signal
and data signal pair m. We optimize for shifting and stretch-
ing individually for computational efficiency. The shift esti-
mation is accomplished with the fast Fourier transform.
The stretch estimate is accomplished with the fast Mellin
transform22. Other optimizations can be applied to estimate
both factors simultaneously, but for our experimental data,
does not provide significant improvement.

Note that the stretch alignment is intended to account for
small stretches between the data and the model. Therefore,

to remove the possibility of erroneous stretching, we
recommend the optimization be constrained to not consider
stretch factors 1− (T0/4)/L < α < 1 + (T0/4)/L , where
T0 is a period of the signal and L is the total length of the
signal. This assures that no part of the data is shifted by more
than a quarter of a period. In our setup with a 250 kHz center
frequency signal and approximately 20 ms length signal,
this is equivalent to approximately 0.995 < α < 1.005. In
our results, all of the optimal stretch factor estimates satisfy
0.9999 < α < 1.0001.

Step 5: Amplitude Alignment
Uncertainties, such as speckle, cause local time variations
in signal amplitude that differ from our model. To remove
these differences, we determine a function β(t) such that
when multiplied by x̂m(αt− τ) results in an optimal match
with our data xm(t). Note that this amplitude correction must
be accomplished with caution to avoid over-fitting to the
damage signature. Therefore, we choose β(t) such that

β(T ) =

∫∞
−∞ w(t, T )x(t)x̂(αt− τ)dt∫∞
−∞ |w(t, T )x̂(αt− τ)|2 dt

, (11)

where w(t, T ) is a rectangular window of width W

w(t, T ) =

{
1 , T −W/2 ≤ t ≤ T +W/2
0 , otherwise (12)

In (11), the T value represents the center of the
data window. Therefore, β(T ) represents an amplitude
adjustment estimate for a range of data centered around
time T and with a time width of W . Mathematically, β(T )
represents the least-squares estimate corresponding to the
solution of

β(T ) = argmin
β(T )

∫ T+W/2

T−W/2

|x(t)− β(T )x̂(αt− τ)|2 dt (13)

for a moving window of width W that is centered around
time T . Once β(T ) is determined, we multiply it with our
model to create an updated model. This is repeated for each
model signal and data signal pair m.

Amplitude alignment minimizes the least-squares error
between windowed sections of x(t) and x̂(αt− τ) for each
sample. Therefore, we can inadvertently remove damage
signatures, particularly for a relatively small window size
(smaller than a period). For relatively large windows (larger
than a period), the optimization can increase the error
between x(t) and x̂(αt− τ) since it minimizes the error
across the window rather than at the sample. This increase
in error is usually small since the least-squares amplitude
estimate needs to be consistent across the entire window.

Step 6: Model Subtraction
The previous steps find the global dispersion curves
and optimal parameters τ , α, and β(t) such that each
measurement of our data xm(t) best fits our modified model
β(t)x̂m(αt− τ). To then isolate the damage signature, we
perform model subtraction

zm(t) = xm(t)− β(t)x̂m(αt− τ) . (14)
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Figure 7. An illustration of the effects of our alignment procedure. (a) Raw measurement with no alignment. (b) Measurement
after subtracting our sparse wavenumber model. (c) Subtraction after shift and stretch alignment. (d) Subtraction after shift,
stretch, and amplitude alignment. This plot clearly shows the damage reflection at 0.55 ms that is less prominent in (b).

The model-subtracted signals zm(t) will therefore contain
information not fitted to our model. In ideal, noise-free
conditions, zm(t) would contain only the damage signature.

Figure 7 illustrates the effects of our optimal alignment
techniques. Figure 7(a) shows one Lamb wave measurement
before model subtraction and Figure 7(b) illustrates the
signal after model subtraction (with no alignment). In both
plots, we observe a large, similar pulse at around 0.045 ms,
indicating possible poor model subtraction. Figure 7(c)
illustrates the subtraction after shift-aligning and stretch-
aligning the model. In this plot, the large pulse is removed
and a smaller pulse around 0.055 ms, which corresponds to
damage, is now more prominent. Figure 7(d) illustrates the
subtraction after amplitude alignment (with a W = 0.02 ms
window) as well. This further reduces some undesirable data
before the 0.055 ms pulse.

Statistical Detection and Localization
We detect and locate damage in the structure through
matched field processing17,38. Matched field processing is
a model-driven localization framework that compares the
signal we expect from damage at pixel p (i.e., a matched
field model) with the actual data received after baseline or
model subtraction. This comparison is accomplished through
a matched field processor, an extension of the matched
filter41.

Matched field processing has been used extensively in
underwater acoustics42, radar43, and recently introduced to
structural health monitoring38. An advantage of matched
field processing is its flexibility and extensibility since it is
based on the matched filter16,41. In this paper, we use a data-
driven matched field processor38 that obtains its model from
sparse wavenumber analysis.

Figure 8 summarizes the matched field processing
methodology that we describe in this section. In this block
diagram, X is an M ×Q matrix of frequency-domain
measurements, Z is an M ×Q matrix of frequency-domain

model-subtracted measurements, V̂ is a sparse N ×Q
dispersion curve matrix, and Yp is an M ×Q matrix of our
matched field model for pixel p. The bp value represents our
statistical measure of damage at pixel p while b(b)p represents
an estimate of statistical bias at pixel p.

For our statistical analysis, we assume the data matrix, the
model-subtracted data matrix, and the matched field model
matrix are represented by collections of vectors such that

X =
[
xT
1 xT

2 xT
3 . . . xT

M

]T
(15)

Z =
[
zT1 zT2 zT3 . . . zTM

]T
(16)

Yp =
[
yT
p,1 yT

p,2 yT
p,3 . . . yT

p,M

]T
. (17)

In these expressions, xm, zm, and yp,m represent the m-
th frequency-domain measurement in the data matrix, the
model-subtracted data matrix, and the matched field model
matrix, respectively.

The Matched Field Model
Our matched field model Yp for pixel p is created from
our sparse wavenumber analysis dispersion curves V̂. We
assume damage acts as a collection of point scatterers.
Therefore, we model signals that travel distances from each
transmit location on the plate to each pixel p in our image
combined with the distances from each pixel p in our image
to each receiver or measurement location. In this paper, we
consider M transmit locations across the plate and a single
receiver. This is theoretically equivalent to considering one
transmitter and M receivers. This damage model, which
is also the basis for many sparse array and phased array
methods, is ideal for locating damage that reflects waves in
all directions, such as cracks44 and holes15,45. Similar models
have also been also applied to locate weaker reflectors, such
as composite delminations23,46.

The sum of these distances from the transmitters to
the receiver for each pixel p and each measurement m
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at pixel p.

are defined as ρp,m. These distances are used by sparse
wavenumber synthesis to create the matched field model.
Specifically, we solve

Φ̃p =

[√
1

κnρp,m
e−jκnρp,m

]
mn

(18)

Yp = Φ̃pV̂ . (19)

In this scenario, Φ̃p is a matrix with the same design as Φ
in (4), but the distances now correspond to the sum of the
distances from transmitter m, to location p, and then to our
receiver. The process for building this model is discussed in
more depth in38.

The Matched Field Processor
We define bp as the intensity of our image (also known
as the ambiguity surface) at pixel p. We choose a matched
field processor to compute bp based on statistical principles.
Specifically, we compute each pixel intensity bp as

bp = M
µ̂2
p

σ̂2
p

(20)

µ̂2
p =

∣∣∣∣∣ 1M
M∑

m=1

yH
p,mzm

∣∣∣∣∣
2

(21)

σ̂2
p =

1

M − 1

M∑
m=1

∣∣∣∣∣yH
p,mzm − 1

M

M∑
m=1

yH
p,mzm

∣∣∣∣∣
2

.(22)

Conceptually, bp is a measure of similarity between the
model-subtracted data zm and our model yp,m for damage at
a given pixel p. When bp is large, our model closely matches
the data and there is a high likelihood that damage is present
at that pixel.

Statistically, bp is the ratio of the squared sample mean
to sample variance of yH

p,mzm. The value yH
p,mzm is the

inner product between our model-subtracted data and our
matched field model. The inner product is large when the
data zm closely matches the model yp,m. Therefore, the
pixel intensity bp is high and denotes damage when the inner
product mean is high and the variance is low. If the variance
across measurements is high, then the result is considered
uncertain and bp is small.

Note that matched field processing analyzes the raw,
high frequency information. This is in contrast with other

guided wave localization methods, such as delay-and-
sum45,47, that process a strictly positive envelope of the data.
Compared with envelope-based approaches, we can achieve
significantly higher resolutions15. In addition, errors in
baseline subtraction cause fewer false alarms since the errors
have a high probability to sum incoherently (i.e., summing
negative and positive values that reduce the magnitude) at
a given pixel while values at the damage location have a
high probability to sum coherently (i.e., summing values
that constructively increase the magnitude). Finally, since the
errors sum incoherently, we can assume pixels outside of the
damage region can be represented by a zero-mean random
variable. This is an important assumption for our statistical
analysis.

We define the estimated location of the damage as the pixel
p that maximizes bp,

p∗ = argmax
p

bp . (23)

Note that while p∗ always exists, it may not be a statistically
significant value. Therefore, we derive a hypothesis test to
ensure statistical significance of the maximum value of bp.

Hypothesis Test
In (20), the expression for bp is a type of CFAR (constant rate
of false alarm) matched filter48. The CFAR matched filter is
an optimal statistic for testing the hypothesis

H0 : µp = 0 (24)
H1 : µp ̸= 0 , (25)

where yH
p,mzm ∼ N(µp, σ

2
p) and σ2

p is an unknown quantity.
Using this statistic assumes that when damage is absent (i.e.,
µp = 0), our model subtraction zm is characterized as white
Gaussian noise with equal unknown variances across each
measurement m. Note that this assumption is relaxed in the
next subsection.

In our scenario, the null hypothesis H0 represents the
damage absent scenario and the alternative hypothesis H1

represents the damage present scenario. Statistically, we
could choose the alternative hypothesis when

bp > γ0 , (26)

where γ0 is a statistical threshold based on a desired false
alarm rate and the distribution of bp.
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While we could use this statistical test to detect damage
at each pixel, it would be ineffective. For example, if we
had 10,000 pixels and a desired false alarm rate of 1%,
we would expect 100 pixels to surpass the threshold γ0.
Furthermore, the pixel intensities are not independent of each
other. Consequentially, the true number of pixels above the
threshold could be much larger.

Therefore, for a collection of pixels, we instead choose the
alternative hypothesis when

max
p

bp > γ , (27)

where γ is statistical threshold based on a desired false alarm
rate and the distribution of maxp bp. When damage is absent,
each bp is distributed according to a Fisher distribution (or
F-distribution) with degrees of freedom of 2 and 2(M −
1), i.e., F (2, 2(M − 1)). The 2’s are introduced because
the frequency domain has complex values. Then according
to extreme value theory, the maximum of an F-distributed
random variable follows an extreme value distribution (type
1), also known as a Gumbel distribution21. Therefore,
the statistic maxp bp is distributed according to a Gumbel
distribution.

The relationship between the F-distribution parameters
and the corresponding Gumbel distribution parameters does
not have known closed form. Therefore, we determine the
parameters and the threshold γ for the Gumbel distribution
through a Monte Carlo simulation. Across 1000 Monte Carlo
trials, we compute the maximum value from 50,000 random
variables distributed according to an F (2, 2(M − 1))
distribution. We then use these 1000 maximum values
to estimate the Gumbel parameters through maximum
likelihood estimation49. Finally, we invert the cumulative
Gumbel distribution function to find a threshold γ for a given
probability of false alarm.

Figure 9 illustrates our estimated thresholds as a function
of the number of measurements M and our desired false
alarm rate. In this paper, we use a false alarm rate of 0.05.
For this false alarm rate, we can fit the curve in Figure 9 to a
power function (with R2 = 0.98) such that the threshold can
be computed as a function of M where

γ(M) = 271.5M−1.28 + 13.66 . (28)

Therefore, for M = 100 measurements, the threshold is
approximately γ = 14.40.

Estimating Worst-case Bias
In our hypothesis test, we assume yH

p,mzm has a zero mean
when damage is absent. Yet, this is generally false due to
imperfect model subtraction. When there is no damage, the
model-subtracted data zm does not show a pure noise signal.
Instead, part of the original data remains and that residual
information will correlate with our matched field model yp,m

to produce a biased result in bp.
Therefore, we estimate the worst-case bias for bp and

offset our threshold γ with this estimate. If this bias is due to
imperfect subtraction, we assume the worst-case bias occurs
when there is no subtraction (i.e., zm = xm for each m).
Under this assumption, the matched field processing result

0 200 400 600 800 1000
Number of Measurements (M)

10

12

14

16

18

20

T
hr

es
ho

ld
 (

)

False
Alarm
Rate

0.0125

0.05

0.2

Figure 9. The approximate statistical threshold (computed
using Monte Carlo estimation) for a Gumbel distribution as a
function of the number of measurements M and false alarm
rate.

with the worst-case bias can be computed as

b(b)p = M
µ̂2
p

σ̂2
p

(29)

µ̂2
p =

∣∣∣∣∣ 1M
M∑

m=1

yH
p,mxm

∣∣∣∣∣
2

(30)

σ̂2
p =

1

M − 1

M∑
m=1

∣∣∣∣∣yH
p,mxm − 1

M

M∑
m=1

yH
p,mxm

∣∣∣∣∣
2

(31)

Note that the image b
(b)
p represents bias, but the true bias

image is likely different. As a result, we consider only the
worst-case value of b

(b)
p , i.e., maxp b

(b)
p , as our measure of

bias.
We use the worst-case bias estimate to adjust our detection

threshold. However, this estimate is a very conservative (i.e.,
high) estimate of the bias. The maximum value is also
not a robust estimate of the bias since a single new value
can significantly change it. Therefore, we define a looser
estimate that provides a higher, and more robust, probability
of detection at the expense of a higher probability of error.
Specifically, we consider the α-percentile value of b(b)p , i.e.,
the value of b

(b)
p such that α percent of the b

(b)
p values are

smaller. We refer to this statistic as b(b)p(α). When α is 100%,

b
(b)
p(α) = maxp b

(b)
p .

With an estimate of our bias, we now choose the
alternative hypothesis when

max
p

bp > γ + b
(b)
p(α) , (32)

where the bias correction b
(b)
p(α) offsets the original statistical

threshold and makes the test more conservative. As a result,
the desired false alarm rate is no longer equal to the empirical
probability of false alarm. Instead, when α is 100%, we label
the desired false alarm rate as the worst-case false alarm rate.
That is, we achieve the desired false alarm rate when the true
bias is equal to our worst-case estimate.
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Experimental Setup
We test our methodology on dense wavefield data collected
from a 100 mm by 100 mm region at the center of a 2 mm
thick SAE 304 stainless steel plate. The plate is sufficiently
large (1000 mm by 1000 mm) such that no reflections are
observed in the wavefield. We perform our partial wavefield
analysis with subsets of the dense wavefield. The full scan
is measured across a uniform grid with a 0.5 mm interval
(or pitch) in both the horizontal and vertical directions. This
results in a 200 by 200 pixel grid.

A scanning Q-switched Nd:YAG diode-pumped solid
state pulsed laser (Advanced Optowave, custom made) is
used to non-destructively generate ultrasonic waves in the
specimen through local thermoelastic expansion-contraction.
The laser has wavelength, beam diameter at the laser exit
port, divergence, and pulse duration of 1064 nm, 0.7 mm,
1.6 mrad, and 30 ns, respectively. Scanning is performed
with a galvanometric scanner (SCANLAB, SCANcube 7) at
a pulse repetition frequency of 100 Hz and approximately
13 ns of duration per pulse. Wave displacements are kept
within the linear-elastic regime of the specimen material
by using relatively low laser pulse energy (1 mJ) so that
elastodynamic reciprocity holds. Due to acoustic reciprocity,
waves traveling from the laser excitation point and sensed
by a permanently bonded sensor can be interpreted as if
generated at the sensor position and traveled to the laser
excitation point. Reconstructing the full wavefield from
signals generated at each spatial location produces much
cleaner, high signal-to-noise ratio50 measurements than
taken in the reciprocal manner9.

The wavefield is then measured using one temporally
bonded piezoelectric sensor (Fuji Ceramics, M304A). The
sensor is located at (x = −70 mm, y = 170 mm) in our
coordinate axis. Note that this is outside of our scanning
region. The transmitted signals are narrowly bandpass
filtered between approximately 200 kHz to 300 kHz so that
they contain only S0 and A0 modes. Each spatial point
records 500 samples with a sampling rate of 5 MHz.

To test and evaluate our method, we perform electrical
discharge machining to introduce a half-thickness circular
hole into the plate with a 2 mm diameter. The center of
the hole is at approximately (x = 52.7 mm, y = 50.6 mm)
on our grid. The hole is positioned on the side of the plate
opposite of our laser. We performed a dense scan of the plate
with and without this damage.

Analysis Setup
We assess our methods and data through a Monte Carlo
process. We randomly choose M measurements from the
dense wavefield, creating a partial wavefield. With these
M measurements, we create and align our model with
the data, perform matched field processing, and test our
statistical hypothesis to detect damage. We repeat process for
different numbers of measurements M , using datasets with
and without damage. For each M , this process is repeated
600 times so that we can study the statistical reliability of
our framework.

Before analyzing the data, each signal is zero-padded to
1024 samples to increase the resolution in the frequency
domain. When working in the frequency domain, only

frequencies between approximately 49 kHz and 490 kHz are
analyzed, resulting in Q = 90 frequency samples. We limit
our frequencies to improve the computational speed of our
analysis. Our results are not significantly affected by this
choice since the measured data is weak outside the chosen
frequency range. Note that this frequency range is larger than
the signals 3dB bandwidth so that we use all of the available
signal frequencies, both inside and outside of the 3dB band.
When we perform sparse wavenumber analysis, we use N =
2164 uniformly spaced wavenumbers between 2 m−1 and
1300 m−1. For our amplitude adjustment algorithm, we use
a window with a width of W = 100 ms.

Results
In this section, we discuss results from applying our method
to the experimental data. We start by illustrating our
localization results from matched field processing. We then
demonstrate our detection results from our hypothesis test.

Localization
Matched field processing. Figures 10(a)-(c) illustrate our
matched field processing images (or ambiguity surfaces) bp
with M = 100 measurements. The white squares represent
the measurement locations. In the image, the intensities
shown are capped at our statistical threshold with the bias
correction of α = 95%.

Figure 10(a) shows the results when there is no damage. In
the image, there is no significantly large values, particularly
when compared to our threshold. Note though that some
regions could potentially be mistaken for damage if no
threshold was defined and the intensity scale was adjusted.

Figure 10(b) shows the result when damage is present.
In the image, the damage is clearly visible in the center of
our region. Figure 10(c) illustrates a magnified replica of
the image. We observe that the largest values are contained
within a single region and have well-defined boundaries.
Compared with phased array methods, which are also used to
quickly scan regions of a structure, our results achieve finer
resolutions23. This result is with consistent with theory since
sparsely separated localization methods are not restricted by
Rayleigh criteria12.

Matched field processing with statistical threshold.
Figures 10(d)-(f) illustrate our matched field processing
images (or ambiguity surfaces) bp after thresholding the
results to remove all values below our statistical threshold
with a bias correction of α = 95%. Therefore, these images
illustrate all of the statistically significant values generated
by matched field processing.

Figure 10(d) shows the results when there is no damage.
In this scenario, the image is entirely zero values. That is, no
damage is detected within the region of interest.

Figure 10(e) shows the result when damage is present.
The statistically significant damage is clearly visible in the
center region of the plate. Figure 10(f) illustrates a magnified
replica of the image. The statistically significant values
are contained within a single region and have well-defined
boundaries. This result shows a statistically significant region
that can be densely scanned to resolve small features in
the damage region. Current imaging techniques with phased
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Figure 10. Illustrations of images produced by matched field processing when (a) damage is absent and (b) when damage is
present. Subfigure (c) shows the same plot as (b), but magnified around the damage location. Subfigures (d)-(f) illustrate the same
plots as (a)-(c), respectively, but values below our statistical threshold with 95% bias correction are removed. White squares
represent M = 100 randomly chosen measurement locations.

array and sparse arrays do not provide the same statistical
guarantees.

In Figure 10(f), a dotted line is shown to represent
the approximate true location of the hole. The statistically
significant values overlap with the hole and could be
considered a rough image of the damage. We produce
additional statistically significant values outside the true
area of the damage due to acoustic shadowing and
diffraction51–53. These effects could potentially be reduced
or removed by using multiple receivers to gain multiple
perspectives on the damage or improving the damage
model. Prior work has shown the ability to improve
localization performance by incorporating diffusion54 and
scattering55 properties in matched field processing and
similar localization methods.

Matched field processing without alignment. Figure 11
illustrates the effects of not applying our alignment
process before matched field processing. We use M =
100 measurements in this example. Figure 11(a) shows
the localization of damage when no alignment is applied.
In this circumstance, the damage is barely visible and no
statistically significant values are shown because the damage
signatures are not significantly prominent in the model-
subtracted data. In Figure 11(b), shift and stretch alignment
has been applied and statistically significant damage is
visible. In Figure 11(c), amplitude alignment has also been
applied. The amplitude alignment makes the intensity values
more uniform across the damage region.

Localization performance. Figure 12 illustrates the local-
ization distance error of matched field processing as a func-
tion of the number of measurements M . Specifically, the
error is the distance between our estimated damage location
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Figure 12. The mean localization error, distance from
estimated damage location and the true damage location, as a
function of number of measurements M . The error bars
represent plus and minus one standard deviation away from the
mean.

p∗ and the center of the hole. The result shows that our
mean localization error is below 2 mm (the diameter of
the hole) with 40 measurements (∆s ≈ 6.3λN ) or more.
For 30 measurements (∆s ≈ 7.3λN ), our mean localization
error is below 5 mm (2.5 times the diameter of the hole).
This performance is comparable to 8 sensor sparse array
guided wave methods that can collect and process 28 unique
measurements. Note that unlike typical sparse array methods,
our approach does not use prior baseline data or an in
situ sensor setup. For large M , the error remains relatively
steady between 1.7 mm and 1.9 mm. Due to shadowing and
diffusion, the maximum value appears slightly behind the
true damage location.
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Figure 11. Illustrations of the effect of signal alignment on matched field processing on our plate with damage. (a) Shows the
result with no alignment. (b) Shows the result with shift and stretching alignment. (c) Shows the result with shift, stretch, and
amplitude alignment.

Statistical Detection
Bias Computation. Figure 13 illustrates example bias
images from applying matched field processing to the
original data. Figure 13(a) shows the result when damage
is absent. Figure 13(b) shows the result when damage is
present.

Based on these plots, the presence of damage, which
creates a much weaker signal than the direct wavefield,
does not significantly affect the bias image. The plots
also show that bias increases as we get closer to receiver.
This is reasonable since pixels closer to the receiver are
associated with shorter travel times and higher amplitudes
when compared with pixels far from the receiver. The α-
percentile highest values from these images are used as the
value of b(b)p(α).

Statistical Threshold Computation. Figure 14 illustrates the
mean maximum image intensity value max bp when damage
is present and when damage is absent. In the figure, we
compare these values with three thresholds as a function of
M .

Figure 14(a) compares our maximum image intensities
to γ with no bias correction (α of 0%). The maximum
intensity from the plate with damage increases rapidly and
the threshold value converges as M increases. The maximum
intensity is, on average, greater than our threshold for M ≥
30. This corresponds well with our localization results in
Figure 12. However, the maximum intensity with damage
absent also steadily increases due to bias. On average, this
damage-absent intensity value is greater than our threshold
for M ≥ 140. As a result, bias correction is necessary.

Figure 14(b) compares our maximum image intensities to
γ with a bias correction of α = 100%. For small M , the
threshold is dominated by γ. For large M , the threshold
is dominated by the bias correction and increases with M .
Since our bias correction is very conservative, we achieve
no false alarms in this scenario. The maximum intensity
with damage present, on average, is greater than the average
threshold when M ≥ 60.

Figure 14(c) compares our maximum image intensities
to γ with a bias correction of α = 95%. For large M ,
the threshold is still dominated by the bias correction and

50 100

Plate Length [mm]

(a)

20

40

60

80

100

P
la

te
 W

id
th

 [
m

m
]

50 100

Plate Length [mm]

(b)

20

40

60

80

100

P
la

te
 W

id
th

 [
m

m
]

b
p

(b)

0

5

10

15

20

25

Figure 13. Two example bias images generated from plate
data. (a) Shows the result using data from the
damage-absent plate. (b) Shows the result using data from
damage-present plate. White squares represent M = 100
randomly chosen measurement locations.

increases with M . We observe no more than one false
alarm across 600 trials (an empirical false alarm rate of
≤ 0.0017, or 0.17%). Furthermore, the maximum intensity
with damage present, on average, is now greater than the
average threshold when M ≥ 40. As a result, we can achieve
significantly better detection accuracy with a relatively
insignificant increase in false alarm rate by decreasing α
from 100% to 95%.

Detection Performance. Figure 15(a) illustrates our
hypothesis test’s empirical probability of detection and
Figure 15(b) shows our empirical probability of false
alarm as functions of the number of measurements M .
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Figure 14. Three plots comparing the thresholds of data with the measured maximum intensities as a function of the number of
measurements M . The “with damage” refers to the maximum intensities from the damage-present plate. The “no damage” label
refers to the maximum intensities from the damage-absent plate. The α% threshold refers to the threshold with α% bias correction.
(a) Compares the values with the 0% bias correction. (b) Compares the values with the 100% bias correction. (c) Compares
the values with the 95% bias correction.
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Figure 15. Empirical probability of detection in (a) and empirical probability of false alarm in (b) as a function of number of
measurements M for three thresholds using a 100% bias correction, 95% bias correction, and 0% bias correction.

The empirical probability of detection is computed from
600 Monte Carlo trials for each M . We illustrate the
empirical probabilities for the threshold of γ with no
bias correction, a bias correction of α = 95%, and a bias
correction of α = 100%.

The results in Figure 15(a) show that the empirical
probability of detection monotonically increases with M for
all three thresholds. For no bias correction, the probability
of detection is greater than 0.98 for M ≥ 50 (∆s ' 5.7λN ).
For the most conservative threshold (α of 100%), the curve
shifts significantly to the right and achieves ≥ 98% detection
accuracy with M ≥ 140 (∆s ' 3.4λN ). Choosing an α of
95% significantly improves the result, achieving a ≥ 98%
detection accuracy using M ≥ 70 (∆s ' 4.8λN ).

The results in Figure 15(b) show that the empirical
probability of false alarm monotonically increases with
M for only the 0% bias. The threshold with 100% bias
correction observes no false alarms. The threshold with 95%
bias correction intermittently observes empirical false alarm
rates of 0.0017. Note that we have tested the 100% and 95%
thresholds for values of M as large as 1000 and do not
observe larger false alarm rates.

Conclusions
This paper presents a framework for statistically detecting
and imaging damage with partial wavefields. The framework

requires no prior baseline measurements and instead uses a
sparse wavenumber model of the wavefield to perform model
subtraction. We presented several algorithms to optimally
fit the sparse wavenumber model with our data before
the subtraction. We then presented a statistical detection
and imaging strategy based on integrating matched field
processing with extreme value theory.

The results demonstrate that we can achieve a nearly
perfect statistical damage detection (≥ 98% detection
rate with ≤ 0.17% false alarm rate) with as few as
70 partial wavefield measurements. This number is
significantly smaller (approximately 570 times smaller) than
the approximately 40,000 that would be measured in a
dense wavefield. Furthermore, the average spatial sampling
interval is approximately 4.8 times larger than the Nyquist
wavelength. As a result, we can detect damage in a fraction
of the time needed by dense wavefield methods.

Even with so few measurements, we also still achieve a
high resolution image of the damage. Neglecting the effects
of shadowing and diffusion, our matched field processing
results achieve accurate images of the size and shape of the
damage. Furthermore, we achieve accurate localization of
the damage with as few as 40 measurements with an average
spatial sampling interval as large as 6.3 times larger than the
Nyquist wavelength.
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There are many opportunities to expand this work.
Specifically, we can improve the imaging of damage by
incorporating diffusion and scattering models into matched
field processing. Alternative computational imaging methods
may also improve the results. In addition, we can extend
this framework to function with other wavefield models24,56

since our sparse wavenumber model is restricted to mostly-
isotropic wavefields with no reflections.
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