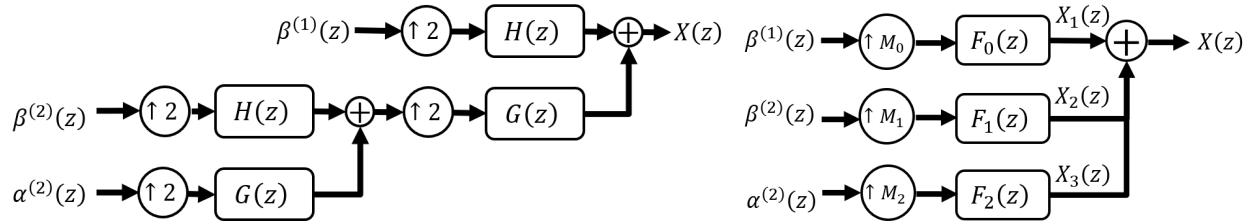


Question #1: Consider the following analysis wavelet bank and filter bank.

Let these filters be defined by


$$H(z) = (1/\sqrt{2})(1 - z^{-1})$$

$$G(z) = (1/\sqrt{2})(1 + z^{-1})$$

(a) Use the Noble identities to simplify the analysis wavelet bank (left) diagram and represent it as a filter bank (right). Determine M_0 , M_1 , and M_2 .

(b) Compute $\beta^{(1)}(z)$, $\beta^{(2)}(z)$, and $\alpha^{(2)}(z)$ for an input $x[n] = \delta[n] + 2\delta[n - 1]$

Question #2: Consider the following synthesis wavelet bank and filter bank.

Let these filters be defined by

$$H(z) = (1/\sqrt{2})(-z^{+1} + 1)$$

$$G(z) = (1/\sqrt{2})(z^{+1} + 1)$$

(a) Use the Noble identities to simplify the analysis wavelet bank (left) diagram and represent it as a filter bank (right). Determine M_0 , M_1 , and M_2 .

(b) Compute $x[n]$ for

$$\beta^{(1)}(z) = \sqrt{2} (1 + z^{-1})$$

$$\beta^{(2)}(z) = 0$$

$$\alpha^{(2)}(z) = 2z^{-1}$$