

Question #1: Consider the four-channel analysis filter bank below.

Let the four filters and three inputs be defined by

$$H_0(z) = (1/2) [z^{+3} + z^{+2} + z^{+1} + 1]$$

$$H_1(z) = (1/2) [-z^{+3} - z^{+2} + z^{+1} + 1]$$

$$H_2(z) = (1/2) [z^{+3} - z^{+2} - z^{+1} + 1]$$

$$H_3(z) = (1/2) [z^{+3} - z^{+2} + z^{+1} - 1]$$

Let the input be defined by

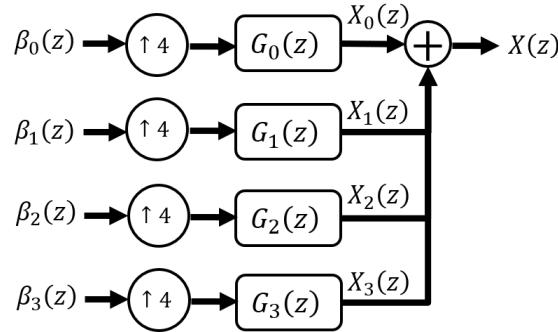
$$X(z) = 2z^{-4} + 2z^{-7}$$

Compute $\beta_0(z)$, $\beta_1(z)$, $\beta_2(z)$, and $\beta_3(z)$.

Solution: The filtered signals are:

$$\begin{aligned}
 X(z)H_0(z) &= (1/2) [z^{+3} + z^{+2} + z^{+1} + 1] [2z^{-4} + 2z^{-7}] \\
 &= z^{-1} + z^{-2} + z^{-3} + z^{-4} + z^{-4} + z^{-5} + z^{-6} + z^{-7} \\
 &= z^{-1} + z^{-2} + z^{-3} + 2z^{-4} + z^{-5} + z^{-6} + z^{-7} \\
 X(z)H_1(z) &= (1/2) [-z^{+3} - z^{+2} + z^{+1} + 1] [2z^{-4} + 2z^{-7}] \\
 &= -z^{-1} - z^{-2} + z^{-3} + z^{-4} - z^{-4} - z^{-5} + z^{-6} + z^{-7} \\
 &= -z^{-1} - z^{-2} + z^{-3} - z^{-5} + z^{-6} + z^{-7} \\
 X(z)H_2(z) &= (1/2) [z^{+3} - z^{+2} - z^{+1} + 1] [2z^{-4} + 2z^{-7}] \\
 &= z^{-1} - z^{-2} - z^{-3} + z^{-4} + z^{-4} - z^{-5} - z^{-6} + z^{-7} \\
 &= z^{-1} - z^{-2} - z^{-3} + 2z^{-4} - z^{-5} - z^{-6} + z^{-7} \\
 X(z)H_3(z) &= (1/2) [z^{+3} - z^{+2} + z^{+1} - 1] [2z^{-4} + 2z^{-7}] \\
 &= z^{-1} - z^{-2} + z^{-3} - z^{-4} + z^{-4} - z^{-5} + z^{-6} - z^{-7} \\
 &= z^{-1} - z^{-2} + z^{-3} - z^{-5} + z^{-6} - z^{-7}
 \end{aligned}$$

The coefficients are:


$$\beta_0(z) = 2z^{-1}$$

$$\beta_1(z) = 0$$

$$\beta_2(z) = 2z^{-1}$$

$$\beta_3(z) = 0$$

Question #2: Consider the four-channel synthesis filter bank below.

Let the four filters and three inputs be defined by

$$\begin{aligned}
 G_0(z) &= (1/2) [1 + z^{-1} + z^{-2} + z^{-3}] & \beta_0(z) &= z^{-1} \\
 G_1(z) &= (1/2) [1 + z^{-1} - z^{-2} - z^{-3}] & \beta_1(z) &= 1 + 3z^{-1} \\
 G_2(z) &= (1/2) [1 - z^{-1} - z^{-2} + z^{-3}] & \beta_2(z) &= 0 \\
 G_3(z) &= (1/2) [1 - z^{-1} + z^{-2} - z^{-3}] & \beta_3(z) &= 0
 \end{aligned}$$

Compute $X_0(z)$, $X_1(z)$, $X_2(z)$, $X_3(z)$, and $X(z)$.

Solution:

$$\begin{aligned}
 X_0(z) &= (1/2) [z^{-4} + z^{-5} + z^{-6} + z^{-7}] \\
 X_1(z) &= (1/2) [1 + z^{-1} - z^{-2} - z^{-3} + 3z^{-4} + 3z^{-5} - 3z^{-6} - 3z^{-7}] \\
 X_2(z) &= 0 \\
 X_3(z) &= 0 \\
 X(z) &= (1/2) [1 + z^{-1} - z^{-2} - z^{-3} + 4z^{-4} + 4z^{-5} - 2z^{-6} - 2z^{-7}]
 \end{aligned}$$