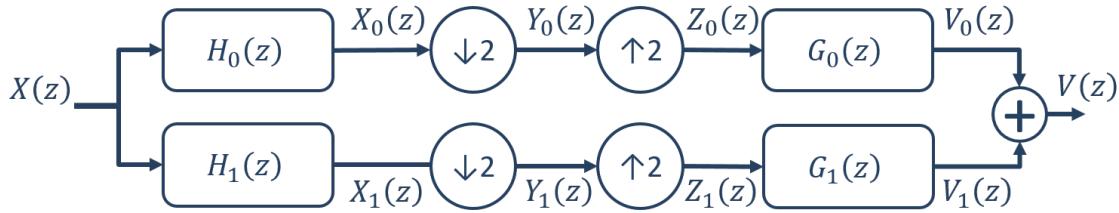


Question #1: Consider the following 2-channel filter bank shown below.



Let the filters be defined by

$$h_0[n] = \alpha (\delta[n] + \delta[n - 1]) \quad g_0[n] = \alpha (\delta[n] + \delta[n + 1])$$

$$h_1[n] = \alpha (\delta[n] - \delta[n - 1]) \quad g_1[n] = \alpha (\delta[n] - \delta[n + 1])$$

(a) Compute the Z-transform of the filter responses and find the value of α that satisfies the alias canceling filter bank conditions. Show why.

Solution:

$$H_0(z) = \alpha (1 + z^{-1}) \quad G_0(z) = \alpha (1 + z^{+1})$$

$$H_1(z) = \alpha (1 - z^{-1}) \quad G_1(z) = \alpha (1 - z^{+1})$$

The alias canceling filter bank condition is:

$$H_0(z)G_0(z) + H_1(z)G_1(z) = 2$$

$$H_0(-z)G_0(z) + H_1(-z)G_1(z) = 0$$

For the first condition:

$$\begin{aligned} \alpha (1 + z^{-1}) \alpha (1 + z^{+1}) + \alpha (1 - z^{-1}) \alpha (1 - z^{+1}) &= 2 \\ \alpha^2 (1 + z^{-1} + z^{+1} + 1) + \alpha^2 (1 - z^{-1} - z^{+1} + 1) &= 2 \\ \alpha^2 (1 + 1) + \alpha^2 (1 + 1) &= 2 \\ \alpha^2 4 &= 2 \\ \alpha = \pm \frac{1}{\sqrt{2}} \end{aligned}$$

For the second condition:

$$\begin{aligned} \alpha (1 - z^{-1}) \alpha (1 + z^{+1}) + \alpha (1 + z^{-1}) \alpha (1 - z^{+1}) &= 0 \\ \alpha^2 (1 - z^{-1} + z^{+1} - 1) + \alpha^2 (1 + z^{-1} - z^{+1} - 1) &= 0 \\ 0 &= 0 \end{aligned}$$

(b) With this value of α , determine all of the intermediate signals ($X_m(z)$, $Y_m(z)$, $Z_m(z)$, $V_m(z)$, and $V(z)$ for all m) in the **time domain** for excitation $X(z) = 1 + z^{-1} - z^{-2} + z^{-3}$.

Solution:

$$X(z) = 1 + z^{-1} - z^{-2} + z^{-3}$$

$$x[n] = 1 + \delta[n-1] - \delta[n-2] + \delta[n-3]$$

$$X_0(z) = X(z)H_0(z) = \alpha(1 + 2z^{-1} + z^{-4})$$

$$Y_0(z) = \frac{1}{2} \left[X_0(z^{1/2}) + X_0(-z^{1/2}) \right]$$

$$= \frac{1}{2} \left[\alpha(1 + 2z^{-1/2} + z^{-2}) + \alpha(1 + 2(-z^{1/2})^{-1} + (-z^{1/2})^{-2}) \right]$$

$$= \frac{1}{2} [\alpha(1 + z^{-2}) + \alpha(1 + z^{-2})]$$

$$= \alpha(1 + z^{-2})$$

$$Z_0(z) = Y_0(z^2)$$

$$= \alpha(1 + z^{-4})$$

$$V_0(z) = G_0(z)Z_0(z)$$

$$= \alpha\alpha(1 + z^{+1})(1 + z^{-4})$$

$$= \alpha^2(1 + z^{+1} + z^{-4} + z^{-3})$$

$$X_1(z) = X(z)H_1(z) = \alpha(1 - 2z^{-2} + 2z^{-3} - z^{-4})$$

$$Y_1(z) = \frac{1}{2} \left[X_1(z^{1/2}) + X_1(-z^{1/2}) \right]$$

$$= \frac{1}{2} \left[\alpha(1 - 2z^{-1/2} + z^{-2}) + \alpha(1 - 2(-z^{1/2})^{-1} + (-z^{1/2})^{-2}) \right]$$

$$= \alpha(1 - 2z^{-1} - z^{-2})$$

$$Z_1(z) = Y_1(z^2)$$

$$= \alpha(1 - 2z^{-2} - z^{-4})$$

$$V_1(z) = G_1(z)Z_1(z)$$

$$= \alpha\alpha(1 - z^{+1})(1 - 2z^{-2} - z^{-4})$$

$$= \alpha^2(-z + 1 + 2z^{-1} - 2z^{-2} + z^{-3} - z^{-4})$$

$$V(z) = V_1(z) + V_2(z)$$

$$= 2\alpha^2(1 + z^{-1} - z^{-2} + z^{-3})$$

$$= 1 + z^{-1} - z^{-2} + z^{-3}$$

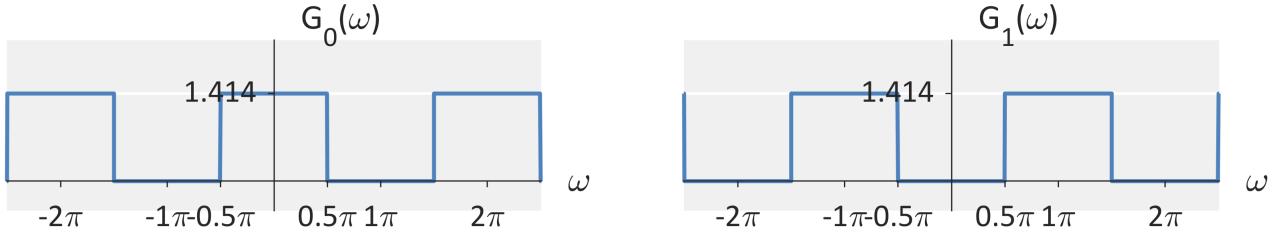
So the time-domain responses are

$$\begin{aligned}x_0[n] &= (1/\sqrt{2})(\delta[n] + 2\delta[n-1] + \delta[n-4]) \\y_0[n] &= (1/\sqrt{2})(\delta[n] + \delta[n-2]) \\z_0[n] &= (1/\sqrt{2})(\delta[n] + \delta[n-4]) \\v_0[n] &= (1/2)(\delta[n+1] + \delta[n] + \delta[n-3] + \delta[n-4])\end{aligned}$$

and

$$\begin{aligned}x_1[n] &= (1/\sqrt{2})(\delta[n] - 2\delta[n-2] + 2\delta[n-3] - \delta[n-4]) \\y_1[n] &= (1/\sqrt{2})(\delta[n] - 2\delta[n-1] + \delta[n-2]) \\z_1[n] &= (1/\sqrt{2})(\delta[n] - 2\delta[n-2] + \delta[n-4]) \\v_1[n] &= (1/2)(-\delta[n+1] + \delta[n] + 2\delta[n-1] - 2\delta[n-2] + \delta[n-3] - \delta[n-4]) \\v[n] &= 1 + \delta[n-1] - \delta[n-2] + \delta[n-3]\end{aligned}$$

Question #2: Consider the following 2-channel filter bank shown in Question #1. Let the filters be defined by the following frequency responses



(a) Assume $H_0(z) = G_0(z^{-1})$ and $H_1(z) = G_1(z^{-1})$. Do the filters satisfy the orthogonal filter bank conditions? Show why.

Solution: The orthogonal filter bank condition is

$$\begin{aligned} G_0(z)G_0(z^{-1}) + G_0(-z)G_0(-z^{-1}) &= 2 \\ G_1(z)G_1(z^{-1}) + G_1(-z)G_1(-z^{-1}) &= 2 \\ G_0(z)G_1(z^{-1}) + G_0(-z)G_1(-z^{-1}) &= 0 \end{aligned}$$

These terms become either 2 or 0 in their respective regions, which leads us to satisfying the orthogonal filter bank conditions.

(b) Sketch all of the intermediate signals ($X_m(z)$, $Y_m(z)$, $Z_m(z)$, $V_m(z)$, and $V(z)$ for all m) in the **frequency domain** for excitation $X(z) = 1$.

Solution:

