

Question #1: Prove the following for a signal $x(t)$ and its Fourier Transform $X(\Omega)$.

(a) If $x(t)$ is real, then $X(\Omega) = X^*(-\Omega)$, where $(\cdot)^*$ is the complex conjugate

Solution: A real signal satisfies:

$$x(t) = x^*(t)$$

So, we can do

$$\begin{aligned} X(\Omega) &= \int_{-\infty}^{\infty} x(t)e^{-j\Omega t} dt \\ &= \int_{-\infty}^{\infty} x^*(t)e^{-j\Omega t} dt \\ &= \left[\int_{-\infty}^{\infty} x(t)e^{+j\Omega t} dt \right]^* \\ &= \left[\int_{-\infty}^{\infty} x(t)e^{-j(-\Omega)t} dt \right]^* \\ &= X^*(-\Omega) \end{aligned}$$

Hence, we get that

$$X(\Omega) = X^*(-\Omega)$$

(b) If $x(t)$ is real and even, then $X(\omega)$ is real and even

(hint: $X(\Omega)$ is even if $X(\Omega) = X(-\Omega)$ and $X(\omega)$ is real if $X(\Omega) = X^*(\Omega)$)

Solution: An even signal satisfies:

$$x(t) = x(-t)$$

So, we can do

$$\begin{aligned} X(\Omega) &= \int_{-\infty}^{\infty} x(t) e^{-j\Omega t} dt \\ &= \int_{-\infty}^{\infty} x(-t) e^{-j\Omega t} dt \end{aligned}$$

Perform change of variables: $\tau = -t$

$$\begin{aligned} &= \left[\int_{-\infty}^{\infty} x(\tau) e^{j\Omega\tau} d\tau \right]^* \\ &= \left[\int_{-\infty}^{\infty} x(\tau) e^{-j(-\Omega)\tau} d\tau \right]^* \\ &= X(-\Omega) \end{aligned}$$

Hence, we get that $X(\omega)$ is even.

If we also apply $X(\Omega) = X^*(-\Omega)$, we get

$$\begin{aligned} X(\Omega) &= X(-\Omega) \\ &= X^*(\Omega) \end{aligned}$$

Hence, we get that $X(\omega)$ is real.

(c) If $x(t)$ is real and odd, then $X(\Omega)$ is imaginary and odd

Solution: An odd signal satisfies:

$$x(t) = -x(-t)$$

Also, a signal is imaginary if

$$\begin{aligned} X^*(\Omega) &= -X(\Omega) \\ \text{or} \\ X(\Omega) &= -X^*(\Omega) \end{aligned}$$

So, we can do

$$\begin{aligned} X(\Omega) &= \int_{-\infty}^{\infty} x(t) e^{-j\Omega t} dt \\ &= \int_{-\infty}^{\infty} -x(-t) e^{-j\Omega t} dt \end{aligned}$$

Perform change of variables: $\tau = -t$

$$\begin{aligned} &= \left[\int_{-\infty}^{\infty} -x(\tau) e^{j\Omega\tau} d\tau \right]^* \\ &= \left[\int_{-\infty}^{\infty} -x(\tau) e^{-j(-\Omega)\tau} d\tau \right]^* \\ &= -X(-\Omega) \end{aligned}$$

Hence, we get that $X(\omega)$ is odd.

If we also apply $X(\Omega) = X^*(-\Omega)$, we get

$$\begin{aligned} X(\Omega) &= -X(-\Omega) \\ &= -X^*(\Omega) \end{aligned}$$

Hence, we get that $X(\omega)$ is imaginary.

Question #2: Use the definitions of the discrete-time Fourier transform (DTFT) / inverse DTFT to answer the questions below. As a reminder, the DTFT / inverse DTFT is defined by

$$X(\omega) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n} \quad , \quad x[n] = \frac{1}{2\pi} \int_{2\pi} X(\omega)e^{j\omega n} d\omega$$

(a) Show that the DTFT of a signal is always periodic with a period of 2π .

Solution:

$$\begin{aligned} X(\omega) &= \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n} \\ X(\omega + 2\pi) &= \sum_{n=-\infty}^{\infty} x[n]e^{-j(\omega+2\pi)n} \\ X(\omega + 2\pi) &= \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}e^{-j2\pi n} \\ X(\omega + 2\pi) &= \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}(1) \quad \text{since } n \in \mathbb{Z} \\ X(\omega + 2\pi) &= \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n} = X(\omega) \end{aligned}$$

Therefore $X(\omega)$ is 2π periodic

(b) Show that if $x[n]$ is real, then its DTFT $X(\omega)$ has conjugate symmetry:

$$X(\omega) = X^*(-\omega)$$

Solution:

$$\begin{aligned} X(\omega) &= \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n} \\ X(-\omega) &= \sum_{n=-\infty}^{\infty} x[n]e^{j\omega n} \\ X^*(-\omega) &= \sum_{n=-\infty}^{\infty} x^*[n]e^{-j\omega n} \\ \text{Real signal : } X[n] &= X^*[n] \\ X^*(-\omega) &= \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n} \\ X^*(-\omega) &= X(\omega) \end{aligned}$$

(c) Show that if $x[n]$ is real (the complex case is not much more difficult), then

$$X_e(\omega) = \sum_{n=-\infty}^{\infty} x_e[n] \cos(\omega n) \quad , \quad X_o(\omega) = -j \sum_{n=-\infty}^{\infty} x_o[n] \sin(\omega n)$$

where $x_e[n]$ and $x_o[n]$ are the even and odd parts of $x[n]$, respectively.

Solution:

$$\begin{aligned} X(\omega) &= \sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n} \\ X(\omega) &= \sum_{n=-\infty}^{\infty} (x_e[n] + x_o[n]) e^{j\omega n} \\ X(\omega) &= \sum_{n=-\infty}^{\infty} (x_e[n] + x_o[n]) (\cos \omega n - j \sin \omega n) \\ X(\omega) &= \sum_{n=-\infty}^{\infty} x_e[n] (\cos \omega n - j \sin \omega n) + \sum_{n=-\infty}^{\infty} x_o[n] (\cos \omega n - j \sin \omega n) \end{aligned}$$

recall that sum of odd functions go to zero

$$\begin{aligned} X(\omega) &= \sum_{n=-\infty}^{\infty} x_e[n] \cos \omega n - j \sum_{n=-\infty}^{\infty} x_o[n] \sin \omega n \\ X(\omega) &= X_e(\omega) + X_o(\omega) \end{aligned}$$

Question #3: Rectangular functions are used throughout signal processing and other fields (e.g., an aperture of a camera in two-dimensions can be represented by a rectangle and its effect on images is a convolution). Hence, the CTFT or DTFT of the rectangular function is also commonly used. In this problem, let's derive the DTFT of a rectangular function. That is, show that following DTFT pair is true:

$$x[n] = u[n + N] - u[n - N - 1]$$

$$X(\omega) = \frac{\sin(\omega(N + 1/2))}{\sin(\omega/2)}$$

You may use the DTFT tables to show this, except do not use the row of the table that explicitly gives this relationship.¹

Solution:

$$x[n] = u[n + N] - u[n - N - 1]$$

$$X(\omega) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$

$$X(\omega) = \sum_{n=-\infty}^{\infty} (u[n + N] - u[n - N - 1])e^{-j\omega n}$$

$$X(\omega) = \sum_{n=-N}^N (u[n + N] - u[n - N - 1])e^{-j\omega n}$$

$$X(\omega) = \sum_{n=-N}^N (1)e^{-j\omega n}$$

Sum of a geometric series with a common ratio of $e^{-j\omega}$ and length $2N + 1$

$$X(\omega) = e^{j\omega N} \frac{1 - e^{-j\omega(2N+1)}}{1 - e^{-j\omega}}$$

$$X(\omega) = e^{j\omega N} e^{-j\omega(2N+1)/2} \frac{e^{j\omega(2N+1)/2} - e^{-j\omega(2N+1)/2}}{e^{-j\omega/2}(e^{j\omega/2} - e^{-j\omega/2})}$$

$$X(\omega) = e^{j\omega N} e^{-j\omega(2N+1)/2} \frac{(2j \sin(\omega(2N+1)/2))}{e^{-j\omega/2}(2j \sin(\omega/2))}$$

ignore the phase terms

$$X(\omega) = \frac{2j \sin(\omega(N + 1/2))}{2j \sin(\omega/2)}$$

$$X(\omega) = \frac{\sin(\omega(N + 1/2))}{\sin(\omega/2)}$$

¹Hint: You may want to use something similar to $1 - e^{-j\omega} = e^{-j\omega/2}(e^{+j\omega/2} - e^{-j\omega/2})$