

Question #1: Let $x[n] = 2 \left(\sum_{k=-\infty}^{\infty} u[n - 3k] - u[n - 4 - 3k] \right)$ be a discrete-time signal.

(a) Sketch the signal $x[n]$ for $-6 \leq n < 6$.

(b) Is $x[n]$ an infinite length signal or finite length signal?

(c) Is $x[n]$ signal periodic? If so, determine the fundamental period.

(d) Is $x[n]$ an even signal, odd signal, or neither?

(e) Is $x[n]$ causal, anti-causal, or neither?

(f) Compute the energy and power of $x[n]$ [for *all* time].

Question #2: Let $x[n] = j^{n/123}$ be a discrete-time signal.

- (a) Is $x[n]$ an infinite length signal or finite length signal?

- (b) Is $x[n]$ signal periodic? If so, determine the fundamental period.

- (c) Is $x[n]$ an even signal, odd signal, or neither?

- (d) Is $x[n]$ causal, anti-causal, or neither?

- (e) Compute the energy and power of $x[n]$ [for *all* time].

Question #3: Answer the following questions.

(a) Let $x_e[n]$ be an even signal and let $x_o[n]$ be an odd signal. Show that

$$x_e[n] = \frac{1}{2} (x_e[n] + x_e[-n])$$
$$x_o[n] = \frac{1}{2} (x_o[n] - x_o[-n])$$

(b) Let $x_e[n]$ be an even signal and let $x_o[n]$ be an odd signal. Show that

$$\sum_{n=-\infty}^{\infty} x_e[n]x_o[n] = 0 .$$

(c) Show that $x[n] = \cos(\pi^2 n)$ is not periodic.