
Data-Driven Matched Field Processing (DDMFP) Repository
Data-Driven Matched Field Processing (DDMFP) is an innovative signal processing framework designed for localizing acoustic sources in complex environments, such as those encountered in structural health monitoring (SHM) using Lamb waves. Traditional matched field processing (MFP) techniques rely heavily on accurate physical models of the propagation medium, which can be challenging to obtain in real-world scenarios. DDMFP circumvents this limitation by constructing localization models directly from measured data, enhancing robustness and accuracy in complex, multimodal propagation environments.