EEL 4750 / EEE 5502 (Fall 2019) - Practice Exam #03

Question	# of Points Possible	# of Points Obtained	Grader
# 1	17		
# 2	15		
# 3	16		
# 4	18		
# 5	18		
# 6	16		
Total	100		

For full credit when sketching: remember to label axes and make locations and amplitudes clear.

Before starting the exam, read and sign the following agreement.

By signing this agreement, I agree to solve the problems of this exam while adhering to the policies and guidelines of the University of Florida and EEL 4750 / EEE 5502 and without additional external help. The guidelines include, but are not limited to,

- The University of Florida honor pledge: "On my honor, I have neither given nor received unauthorized aid in doing this assignment."
- Only one 8.5 by 11 inch cheat sheet (double-sided) may be used
- No calculators or computers may be used
- No textbooks or additional notes may be used
- No collaboration is allowed
- No cheating is allowed

Student

Date

Question #1: Consider the DTFT of the signal x[n] (i.e., $X(\omega)$) shown below.

- (a) (4 pts) What is the maximum achievable downsampling factor for 5x[n] without aliasing?
 Solution: The maximum downsampling factor is 2
- (b) (7 pts) Sketch the DTFT (from $\omega = -3\pi$ to $\omega = 3\pi$) of x[n] after downsampling by 3 (with no anti-aliasing filter). Remember to label important locations / values.

Solution:

(c) (8 pts) Sketch the DTFT (from $\omega = -3\pi$ to $\omega = 3\pi$) of x[n] after downsampling by 4 (with an anti-aliasing filter). Remember to label important locations / values.

Solution:

Question #2: Consider the DTFT of the signal x[n] (i.e., $X(\omega)$) shown below.

(a) (8 pts) Sketch the DTFT (from $\omega = -3\pi$ to $\omega = 3\pi$) of x[n] after upsampling by 2 (with an interpolation filter). Remember to label important locations / values.

Solution:

(b) (7 pts) Sketch the DTFT (from $\omega = -3\pi$ to $\omega = 3\pi$) of x[n] after upsampling by 2 (with no interpolation filter). Remember to label important locations / values.

Solution:

Question #3: Consider a 2-channel filter bank shown below.

Let the filters be defined by the frequency domain expression

$$H_0(\omega) = G_0(\omega) = \sqrt{2}\sin(\omega/2)$$

(a) (7 pts) Choose a filter $H_1(\omega) = G_1(\omega)$ that satisfies the alias canceling conditions.

Solution: The alias canceling conditions:

$$H_0(\omega)G_0(\omega) + H_1(\omega)G_1(\omega) = 2$$
$$H_0(\omega - \pi)G_0(\omega) + H_1(\omega - \pi)G_1(\omega) = 0$$
$$2\sin(\omega/2)\sin(\omega/2) + H_1(\omega)G_1(\omega) = 2$$

$$2\sin((\omega-\pi)/2)\sin(\omega/2) + H_1(\omega-\pi)G_1(\omega) = 0$$

$$2\sin^2(\omega/2) + H_1(\omega)G_1(\omega) = 2$$
$$-2\cos(\omega/2)\sin(\omega/2) + H_1(\omega - \pi)G_1(\omega) = 0$$

If we choose $H_1(\omega)=G_1(\omega)=\sqrt{2}\cos(\omega/2)$,

$$2\sin^{2}(\omega/2) + 2\cos^{2}(\omega/2) = 2$$
$$-2\cos(\omega/2)\sin(\omega/2) + 2\cos((\omega - \pi)/2)\cos(\omega/2) = 0$$

$$2\sin^2(\omega/2) + 2\cos^2(\omega/2) = 2$$
$$-2\cos(\omega/2)\sin(\omega/2) + 2\sin(\omega/2)\cos(\omega/2) = 0$$

2 = 20 = 0 (b) (7 pts) Let $X(\omega) = \cos(\omega/2)$. Compute the intermediate signal $V_0(\omega)$.

Solution: The frequency response at $V_0(\omega)$ is

$$V_0(\omega) = (1/2) \left[H_0(\omega) X(\omega) + H_0(\omega - \pi) X(\omega - \pi) \right] G_0(\omega)$$

= (1/2) $\left[\sin(\omega/2) \cos(\omega/2) + \sin((\omega - \pi)/2) \cos((\omega - \pi)/2) \right] G_0(\omega)$
= (1/2) $\left[\sin(\omega/2) \cos(\omega/2) - \cos(\omega/2) \sin(\omega/2) \right] G_0(\omega)$
= 0

(c) (4 pts) (True or False) When the alias canceling conditions are met, $V_0(z) = V_1(z)$.

Solution: False, alias canceling ensures that $V_0(z) + V_1(z) = X(z)$, which is not guaranteed to be true when $V_0(z) = V_1(z)$.

Question #4: Consider the following wavelet bank and filter bank.

Let the high pass filter H(z) and low pass filter G(z) be defined by frequency responses:

$$G(\omega) = \sum_{k=-\infty}^{\infty} u(\omega + \pi/2 - 2\pi k) - u(\omega - \pi/2 - 2\pi k)$$
$$H(\omega) = \sum_{k=-\infty}^{\infty} u(\omega + \pi/2 - \pi - 2\pi k) - u(\omega - \pi/2 - \pi - 2\pi k)$$

Use the Noble identities to simplify the wavelet bank (left) diagram and represent it as a filter bank (right). Determine M_1 , M_2 , and M_3 . Sketch $|F_1(\omega)|$, $|F_2(\omega)|$, and $|F_3(\omega)|$.

Solution: $M_1 = 2$, $M_2 = 4$, $M_3 = 4$.

$$F_1(\omega) = H(z)$$

$$F_2(\omega) = G(z)H(z^2)$$

$$F_3(\omega) = G(z)G(z^2)$$

Table of Discrete-Time Fourier Transform Pairs:

Discrete-Time Fourier Transform : $X(\omega) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$ Inverse Discrete-Time Fourier Transform : $x[n] = \frac{1}{2\pi} \int_{2\pi} X(\omega)e^{j\omega t} d\omega$.

x[n]	$X(\omega)$	condition
$a^n u[n]$	$\frac{1}{1 - ae^{-j\omega}}$	a < 1
$(n+1)a^nu[n]$	$\frac{1}{(1-ae^{-j\omega})^2}$	a < 1
$\frac{(n+r-1)!}{n!(r-1)!}a^nu[n]$	$\frac{1}{(1-ae^{-j\omega})^r}$	a < 1
$\delta[n]$	1	
$\delta[n-n_0]$	$e^{-j\omega n_0}$	
x[n] = 1	$2\pi \sum_{k=-\infty}^{\infty} \delta(\omega - 2\pi k)$	
u[n]	$\frac{1}{1 - e^{-j\omega}} + \sum_{k = -\infty}^{\infty} \pi \delta(\omega - 2\pi k)$	
$e^{j\omega_0 n}$	$2\pi \sum_{k=-\infty}^{\infty} \delta(\omega - \omega_0 - 2\pi k)$	
$\cos(\omega_0 n)$	$\pi \sum_{k=-\infty}^{n=-\infty} \{\delta(\omega - \omega_0 - 2\pi k) + \delta(\omega + \omega_0 - 2\pi k)\}$	
$\sin(\omega_0 n)$	$\frac{\pi}{j}\sum_{k=-\infty}^{\infty} \left\{ \delta(\omega - \omega_0 - 2\pi k) - \delta(\omega + \omega_0 - 2\pi k) \right\}$	
$\sum_{k=-\infty}^{\infty} \delta[n-kN]$	$\frac{2\pi}{N}\sum_{k=-\infty}^{\infty}\delta\left(\omega-\frac{2\pi k}{N}\right)$	
$x[n] = \begin{cases} 1 & , & n \le N \\ 0 & , & n > N \end{cases}$	$\frac{\sin(\omega(N+1/2))}{\sin(\omega/2)}$	
	$X(\omega) = \begin{cases} 1 & , & 0 \le \omega \le W \\ 0 & , & W < \omega \le \pi \end{cases}$	
	$X(\omega)$ is periodic with period 2π	

 Table of Discrete-Time Fourier Transform Properties:
 For each property, assume

Property	Time domain	DTFT domain
Linearity	Ax[n] + By[n]	$AX(\omega) + BY(\omega)$
Time Shifting	$x[n-n_0]$	$X(\omega)e^{-j\omega n_0}$
Frequency Shifting	$x[n]e^{j\omega_0 n}$	$X(\omega - \omega_0)$
Conjugation	$x^*[n]$	$X^*(-\omega)$
Time Reversal	x[-n]	$X(-\omega)$
Convolution	x[n] * y[n]	$X(\omega)Y(\omega)$
Multiplication	x[n]y[n]	$\frac{1}{2\pi}\int_{2\pi}X(\theta)Y(\omega-\theta)d\theta$
Differencing in Time	x[n] - x[n-1]	$(1 - e^{-j\omega})X(\omega)$
Accumulation	$\sum_{k=-\infty}^{\infty} x[k]$	$\frac{1}{1-e^{-j\omega}} + \pi X(0) \sum_{k=-\infty}^{\infty} \delta(\omega - 2\pi k)$
Frequency Differentiation	nx[n]	$jrac{dX(\omega)}{d\omega}$
Parseval's Relation for Aperiodic Signals	$\sum_{k=-\infty}^{\infty} x[k] ^2$	$\frac{1}{2\pi} \int_{2\pi} X(\omega) ^2 d\omega$

$$x[n] \stackrel{DTFT}{\longleftrightarrow} X(\omega) \text{ and } y[n] \stackrel{DTFT}{\longleftrightarrow} Y(\omega)$$

Table of Z-Transform Pairs:

Z-Transform	:	$X(z) = \sum_{n = -\infty}^{\infty} x[n] z^{-n}$
Inverse Z-Transform	:	$x[n] = \frac{1}{2\pi j} \oint_{\mathcal{C}} X(z) z^{n-1} dz .$

x[n]	$X(\omega)$	ROC
$a^n u[n]$	$\frac{1}{1-az^{-1}}$	z > c
$-a^n u[-n-1]$	$\frac{1}{1-az^{-1}}$	z < c
$na^nu[n]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z > c
$-na^nu[-n-1]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z < c
$\delta[n]$	1	All z
$\delta[n-n_0]$	z^{-n_0}	All z
u[n]	$\frac{1}{1-z^{-1}}$	z > 1
$\cos(\omega_0 n)u[n]$	$\frac{1 - z^{-1}\cos(\omega_0)}{1 - 2z^{-1}\cos(\omega_0) + z^{-2}}$	z > 1
$\sin(\omega_0 n)u[n]$	$\frac{z^{-1}\sin(\omega_0)}{1 - 2z^{-1}\cos(\omega_0) + z^{-2}}$	z > 1
$a^n \cos(\omega_0 n) u[n]$	$\frac{1 - az^{-1}\cos(\omega_0)}{1 - 2az^{-1}\cos(\omega_0) + a^2 z^{-2}}$	z > z
$a^n \sin(\omega_0 n) u[n]$	$\frac{az^{-1}\sin(\omega_0)}{1 - a2z^{-1}\cos(\omega_0) + a^2z^{-2}}$	z > z

Table of Z-Transform Properties: For each property, assume

Property	Time domain	Z-domain
Linearity	Ax[n] + By[n]	AX(z) + BY(z)
Time Shifting	$x[n-n_0]$	$X(z)z^{-n_0}$
Z-scaling	$a^n x[n]$	$X(a^{-1}z)$
Conjugation	$x^*[n]$	$X^*(z^*)$
Time Reversal	x[-n]	$X(z^{-1})$
Convolution	x[n] * y[n]	X(z)Y(z)
Differentiation in z-domain	nx[n]	$-z\frac{dX(z)}{dz}$
Initial Value Theorem	x[n] is causal	$x(0) = \lim_{z \to \infty} X(z)$

$$x[n] \xleftarrow{Z} X(z) \quad \text{and} \quad y[n] \xleftarrow{Z} Y(z)$$