Question	\# of Points Possible	\# of Points Obtained	Grader
$\# 1$	17		
$\# 2$	15		
$\# 3$	16		
$\# 4$	18		
$\# 5$	16		
$\# 6$	100		
Total			

For full credit when sketching: remember to label axes and make locations and amplitudes clear.

Before starting the exam, read and sign the following agreement.
By signing this agreement, I agree to solve the problems of this exam while adhering to the policies and guidelines of the University of Florida and EEL 4750 / EEE 5502 and without additional external help. The guidelines include, but are not limited to,

- The University of Florida honor pledge: "On my honor, I have neither given nor received unauthorized aid in doing this assignment."
- Only one 8.5 by 11 inch cheat sheet (double-sided) may be used
- No calculators or computers may be used
- No textbooks or additional notes may be used
- No collaboration is allowed
- No cheating is allowed

[^0]Question \#1: Consider the DTFT of the signal $x[n]$ (i.e., $X(\omega)$) shown below.

(a) (4 pts) What is the maximum achievable downsampling factor for $5 x[n]$ without aliasing?

Solution: The maximum downsampling factor is 2
(b) (7 pts) Sketch the DTFT (from $\omega=-3 \pi$ to $\omega=3 \pi$) of $x[n]$ after downsampling by 3 (with no anti-aliasing filter). Remember to label important locations / values.

Solution:

ω
(c) (8 pts) Sketch the DTFT (from $\omega=-3 \pi$ to $\omega=3 \pi$) of $x[n]$ after downsampling by 4 (with an anti-aliasing filter). Remember to label important locations / values.

Solution:

Question \#2: Consider the DTFT of the signal $x[n]$ (i.e., $X(\omega)$) shown below.

(a) (8 pts) Sketch the DTFT (from $\omega=-3 \pi$ to $\omega=3 \pi$) of $x[n]$ after upsampling by 2 (with an interpolation filter). Remember to label important locations / values.

Solution:

ω
(b) (7 pts) Sketch the DTFT (from $\omega=-3 \pi$ to $\omega=3 \pi$) of $x[n]$ after upsampling by 2 (with no interpolation filter). Remember to label important locations / values.

Solution:

Question \#3: Consider a 2-channel filter bank shown below.

Let the filters be defined by the frequency domain expression

$$
H_{0}(\omega)=G_{0}(\omega)=\sqrt{2} \sin (\omega / 2)
$$

(a) (7 pts) Choose a filter $H_{1}(\omega)=G_{1}(\omega)$ that satisfies the alias canceling conditions.

Solution: The alias canceling conditions:

$$
\begin{aligned}
H_{0}(\omega) G_{0}(\omega)+H_{1}(\omega) G_{1}(\omega) & =2 \\
H_{0}(\omega-\pi) G_{0}(\omega)+H_{1}(\omega-\pi) G_{1}(\omega) & =0 \\
2 \sin (\omega / 2) \sin (\omega / 2)+H_{1}(\omega) G_{1}(\omega) & =2 \\
2 \sin ((\omega-\pi) / 2) \sin (\omega / 2)+H_{1}(\omega-\pi) G_{1}(\omega) & =0 \\
2 \sin ^{2}(\omega / 2)+H_{1}(\omega) G_{1}(\omega) & =2 \\
-2 \cos (\omega / 2) \sin (\omega / 2)+H_{1}(\omega-\pi) G_{1}(\omega) & =0
\end{aligned}
$$

If we choose $H_{1}(\omega)=G_{1}(\omega)=\sqrt{2} \cos (\omega / 2)$,

$$
\begin{aligned}
2 \sin ^{2}(\omega / 2)+2 \cos ^{2}(\omega / 2) & =2 \\
-2 \cos (\omega / 2) \sin (\omega / 2)+2 \cos ((\omega-\pi) / 2) \cos (\omega / 2) & =0 \\
2 \sin ^{2}(\omega / 2)+2 \cos ^{2}(\omega / 2) & =2 \\
-2 \cos (\omega / 2) \sin (\omega / 2)+2 \sin (\omega / 2) \cos (\omega / 2) & =0 \\
2 & =2 \\
0 & =0
\end{aligned}
$$

(b) (7 pts) Let $X(\omega)=\cos (\omega / 2)$. Compute the intermediate signal $V_{0}(\omega)$.

Solution: The frequency response at $V_{0}(\omega)$ is

$$
\begin{aligned}
V_{0}(\omega) & =(1 / 2)\left[H_{0}(\omega) X(\omega)+H_{0}(\omega-\pi) X(\omega-\pi)\right] G_{0}(\omega) \\
& =(1 / 2)[\sin (\omega / 2) \cos (\omega / 2)+\sin ((\omega-\pi) / 2) \cos ((\omega-\pi) / 2)] G_{0}(\omega) \\
& =(1 / 2)[\sin (\omega / 2) \cos (\omega / 2)-\cos (\omega / 2) \sin (\omega / 2)] G_{0}(\omega) \\
& =0
\end{aligned}
$$

(c) (4 pts) (True or False) When the alias canceling conditions are met, $V_{0}(z)=V_{1}(z)$.

Solution: False, alias canceling ensures that $V_{0}(z)+V_{1}(z)=X(z)$, which is not guaranteed to be true when $V_{0}(z)=V_{1}(z)$.

Question \#4: Consider the following wavelet bank and filter bank.

Let the high pass filter $H(z)$ and low pass filter $G(z)$ be defined by frequency responses:
$G(\omega)=\sum_{k=-\infty}^{\infty} u(\omega+\pi / 2-2 \pi k)-u(\omega-\pi / 2-2 \pi k)$
$H(\omega)=\sum_{k=-\infty}^{\infty} u(\omega+\pi / 2-\pi-2 \pi k)-u(\omega-\pi / 2-\pi-2 \pi k)$
Use the Noble identities to simplify the wavelet bank (left) diagram and represent it as a filter bank (right). Determine M_{1}, M_{2}, and M_{3}. Sketch $\left|F_{1}(\omega)\right|,\left|F_{2}(\omega)\right|$, and $\left|F_{3}(\omega)\right|$.

Solution: $M_{1}=2, M_{2}=4, M_{3}=4$.

$$
\begin{aligned}
& F_{1}(\omega)=H(z) \\
& F_{2}(\omega)=G(z) H\left(z^{2}\right) \\
& F_{3}(\omega)=G(z) G\left(z^{2}\right)
\end{aligned}
$$

Table of Discrete-Time Fourier Transform Pairs:

$$
\begin{array}{r}
\text { Discrete-Time Fourier Transform }: \quad X(\omega)=\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega n} \\
\text { Inverse Discrete-Time Fourier Transform }
\end{array}
$$

$x[n]$	$X(\omega)$	condition
$a^{n} u[n]$	$\frac{1}{1-a e^{-j \omega}}$	$\|a\|<1$
$(n+1) a^{n} u[n]$	$\frac{1}{\left(1-a e^{-j \omega}\right)^{2}}$	$\|a\|<1$
$\frac{(n+r-1)!}{n!(r-1)!} a^{n} u[n]$	$\frac{1}{\left(1-a e^{-j \omega}\right)^{r}}$	$\|a\|<1$
$\delta[n]$	1	
$\delta\left[n-n_{0}\right]$	$e^{-j \omega n_{0}}$	
$x[n]=1$	$2 \pi \sum_{k=-\infty}^{\infty} \delta(\omega-2 \pi k)$	
$u[n]$	$\frac{1}{1-e^{-j \omega}}+\sum_{k=-\infty}^{\infty} \pi \delta(\omega-2 \pi k)$	
$e^{j \omega_{0} n}$	$2 \pi \sum_{k=-\infty}^{\infty} \delta\left(\omega-\omega_{0}-2 \pi k\right)$	
$\cos \left(\omega_{0} n\right)$	$\pi \sum_{k=-\infty}^{\infty}\left\{\delta\left(\omega-\omega_{0}-2 \pi k\right)+\delta\left(\omega+\omega_{0}-2 \pi k\right)\right\}$	
$\sin \left(\omega_{0} n\right)$	$\frac{\pi}{j} \sum_{k=-\infty}^{\infty}\left\{\delta\left(\omega-\omega_{0}-2 \pi k\right)-\delta\left(\omega+\omega_{0}-2 \pi k\right)\right\}$	
$\sum_{k=-\infty}^{\infty} \delta[n-k N]$	$\frac{2 \pi}{N} \sum_{k=-\infty}^{\infty} \delta\left(\omega-\frac{2 \pi k}{N}\right)$	
$x[n]= \begin{cases}1 & , \quad\|n\| \leq N \\ 0 & , \quad\|n\|>N\end{cases}$	$\frac{\sin (\omega(N+1 / 2))}{\sin (\omega / 2)}$	
$\frac{\sin (W n)}{\pi n}=\frac{W}{\pi} \operatorname{sinc}\left(\frac{W n}{\pi}\right)$	$X(\omega)= \begin{cases}1 & , \quad 0 \leq\|\omega\| \leq W \\ 0 & , \quad W<\|\omega\| \leq \pi\end{cases}$	
	$X(\omega)$ is periodic with period 2π	

Table of Discrete-Time Fourier Transform Properties: For each property, assume

	$x[n] \stackrel{D T F T}{\longleftrightarrow} X(\omega)$ and $y[n] \stackrel{D T F T}{\longleftrightarrow} Y(\omega)$	
Property	Time domain	DTFT domain
Linearity	$A x[n]+B y[n]$	$A X(\omega)+B Y(\omega)$
Time Shifting	$x\left[n-n_{0}\right]$	$X(\omega) e^{-j \omega n_{0}}$
Frequency Shifting	$x[n] e^{j \omega_{0} n}$	$X\left(\omega-\omega_{0}\right)$
Conjugation	$x^{*}[n]$	$X^{*}(-\omega)$
Time Reversal	$x[-n]$	$X(-\omega)$
Convolution	$x[n] * y[n]$	$X(\omega) Y(\omega)$
Multiplication	$x[n] y[n]$	$\frac{1}{2 \pi} \int_{2 \pi} X(\theta) Y(\omega-\theta) d \theta$
Differencing in Time	$x[n]-x[n-1]$	$\left(1-e^{-j \omega}\right) X(\omega)$
Accumulation	$\sum_{k=-\infty}^{\infty} x[k]$	$\frac{1}{1-e^{-j \omega}+\pi X(0) \sum_{k=-\infty}^{\infty} \delta(\omega-2 \pi k)}$
Frequency Differentiation	$n x[n]$	$j \frac{d X(\omega)}{d \omega}$
Parseval's Relation for Aperiodic Signals	$\sum_{k=-\infty}^{\infty}\|x[k]\|^{2}$	$\frac{1}{2 \pi} \int_{2 \pi}\|X(\omega)\|^{2} d \omega$

Table of Z-Transform Pairs:

$$
\begin{aligned}
\text { Z-Transform } & : X(z)=\sum_{n=-\infty}^{\infty} x[n] z^{-n} \\
\text { Inverse Z-Transform } & : \quad x[n]=\frac{1}{2 \pi j} \oint_{\mathcal{C}} X(z) z^{n-1} d z
\end{aligned}
$$

$x[n]$	$X(\omega)$	ROC
$a^{n} u[n]$	$\frac{1}{1-a z^{-1}}$	$\|z\|>\|a\|$
$-a^{n} u[-n-1]$	$\frac{1}{1-a z^{-1}}$	$\|z\|<\|a\|$
$n a^{n} u[n]$	$\frac{a z^{-1}}{\left(1-a z^{-1}\right)^{2}}$	$\|z\|>\|a\|$
$-n a^{n} u[-n-1]$	$\frac{a z^{-1}}{\left(1-a z^{-1}\right)^{2}}$	$\|z\|<\|a\|$
$\delta[n]$	1	$\mathrm{All} z$
$\delta\left[n-n_{0}\right]$	$\frac{1}{1-z^{-1}}$	$\|z\|>1$
$u[n]$	$\frac{1-z^{-1} \cos \left(\omega_{0}\right)}{1-2 z^{-1} \cos \left(\omega_{0}\right)+z^{-2}}$	$\|z\|>1$
$\cos \left(\omega_{0} n\right) u[n]$		
$\sin \left(\omega_{0} n\right) u[n]$	$\frac{z^{-1} \sin \left(\omega_{0}\right)}{1-2 z^{-1} \cos \left(\omega_{0}\right)+z^{-2}}$	$\|z\|>1$
$a^{n} \cos \left(\omega_{0} n\right) u[n]$	$\frac{1-a z^{-1} \cos \left(\omega_{0}\right)}{1-2 a z^{-1} \cos \left(\omega_{0}\right)+a^{2} z^{-2}}$	$\|z\|>\|a\|$
$a^{n} \sin \left(\omega_{0} n\right) u[n]$	$\frac{a z^{-1} \sin \left(\omega_{0}\right)}{1-a 2 z^{-1} \cos \left(\omega_{0}\right)+a^{2} z^{-2}}$	$\|z\|>\|a\|$

Table of Z-Transform Properties: For each property, assume

$$
x[n] \stackrel{Z}{\longleftrightarrow} X(z) \quad \text { and } y[n] \stackrel{Z}{\longleftrightarrow} Y(z)
$$

Property	Time domain	Z-domain
Linearity	$A x[n]+B y[n]$	$A X(z)+B Y(z)$
Time Shifting	$x\left[n-n_{0}\right]$	$X(z) z^{-n_{0}}$
Z-scaling	$a^{n} x[n]$	$X\left(a^{-1} z\right)$
Conjugation	$x^{*}[n]$	$X^{*}\left(z^{*}\right)$
Time Reversal	$x[-n]$	$X\left(z^{-1}\right)$
Convolution	$x[n] * y[n]$	$X(z) Y(z)$
Differentiation in z-domain	$n x[n]$	$-z \frac{d X(z)}{d z}$
Initial Value Theorem	$x[n]$ is causal	$x(0)=\lim _{z \rightarrow \infty} X(z)$

[^0]: Date

