
Lecture 28: Designing IIR FiltersFoundations of Digital Signal Processing

Outline

• Designing IIR Filters with Discrete Differentiation

• Designing IIR Filters with Impulse Invariance

• Designing IIR Filters with the Bilinear Transform

• Related Analog Filters

Lecture 28: Design of IIR Filters
Foundations of Digital Signal Processing
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Lecture 28: Designing IIR FiltersFoundations of Digital Signal Processing

IIR Filter Design from Derivatives

◼ Designing IIR Filters

▪ No easy ways to design digital IIR filters

▪ So let us start from analog filters
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IIR Filter Design from Derivatives

◼ Designing IIR Filters

▪ No easy ways to design digital IIR filters

▪ So let us start from analog filters

◼ Option 1: Preserve the difference equation!
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IIR Filter Design from Derivatives

◼ Question: What is a derivative in discrete-time?

▪ In continuous-time

𝑑𝑥 𝑡

𝑑𝑡
→ 𝑠𝑋 𝑠

▪ In discrete-time

4



Lecture 28: Designing IIR FiltersFoundations of Digital Signal Processing

IIR Filter Design from Derivatives

◼ Question: What is a derivative in discrete-time?

▪ In continuous-time

𝑑𝑥 𝑡

𝑑𝑡
→ 𝑠𝑋 𝑠

▪ In discrete-time

𝑑𝑥 𝑡

𝑑𝑡
= lim

Δ𝑇→0

𝑥 𝑡 − 𝑥 𝑡 − Δ𝑇

Δ𝑇

ቤ
𝑑𝑥 𝑡

𝑑𝑡
𝑡=𝑛𝑇

=
𝑥 𝑛𝑇 − 𝑥 𝑛𝑇 − 𝑇

𝑇
= 𝑥 𝑛 − 𝑥 𝑛 − 1
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IIR Filter Design from Derivatives

◼ Question: What is a derivative in discrete-time?

▪ In continuous-time

𝑑𝑥 𝑡

𝑑𝑡
→ 𝑠𝑋 𝑠

▪ In discrete-time

𝑑𝑥 𝑡

𝑑𝑡
= lim

Δ𝑇→0

𝑥 𝑡 − 𝑥 𝑡 − Δ𝑇

Δ𝑇

ቤ
𝑑𝑥 𝑡

𝑑𝑡
𝑡=𝑛𝑇

=
𝑥 𝑛𝑇 − 𝑥 𝑛𝑇 − 𝑇

𝑇
=
1

𝑇
𝑥 𝑛 − 𝑥 𝑛 − 1
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IIR Filter Design from Derivatives

◼ Question: What is a derivative in discrete-time?

▪ In continuous-time

𝑑𝑥 𝑡

𝑑𝑡
→ 𝑠𝑋 𝑠

▪ In discrete-time

𝑑𝑥 𝑡

𝑑𝑡
= lim

Δ𝑇→0

𝑥 𝑡 − 𝑥 𝑡 − Δ𝑇

Δ𝑇

ቤ
𝑑𝑥 𝑡

𝑑𝑡
𝑡=𝑛𝑇

=
𝑥 𝑛𝑇 − 𝑥 𝑛𝑇 − 𝑇

𝑇
=
1

𝑇
𝑥 𝑛 − 𝑥 𝑛 − 1

ቤ
𝑑𝑥 𝑡

𝑑𝑡
𝑡=𝑛𝑇

→
1

𝑇
1 − 𝑧−1 𝑋 𝑧
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IIR Filter Design from Derivatives

◼ Question: What is a second-derivative in discrete-time?

▪ In continuous-time

𝑑2𝑥 𝑡

𝑑𝑡2
→ 𝑠2𝑋 𝑠

▪ In discrete-time

𝑑2𝑥 𝑡

𝑑𝑡2
=
𝑑𝑥 𝑡

𝑑𝑡

𝑑𝑥 𝑡

𝑑𝑡

ቤ
𝑑𝑥 𝑡

𝑑𝑡
𝑡=𝑛𝑇

=
𝑥 𝑛𝑇 − 𝑥 𝑛𝑇 − 𝑇

𝑇

8



Lecture 28: Designing IIR FiltersFoundations of Digital Signal Processing

IIR Filter Design from Derivatives

◼ Question: What is a second-derivative in discrete-time?

▪ In continuous-time

𝑑2𝑥 𝑡

𝑑𝑡2
→ 𝑠2𝑋 𝑠

▪ In discrete-time

𝑑2𝑥 𝑡

𝑑𝑡2
=
𝑑𝑥 𝑡

𝑑𝑡

𝑑𝑥 𝑡

𝑑𝑡

อ
𝑑2𝑥 𝑡

𝑑𝑡2
𝑡=𝑛𝑇

=
𝑥 𝑛𝑇 − 𝑥 𝑛𝑇 − 𝑇 /𝑇 − 𝑥 𝑛𝑇 − 𝑇 − 𝑥 𝑛𝑇 − 2𝑇 /𝑇

𝑇
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IIR Filter Design from Derivatives

◼ Question: What is a second-derivative in discrete-time?

▪ In continuous-time

𝑑2𝑥 𝑡

𝑑𝑡2
→ 𝑠2𝑋 𝑠

▪ In discrete-time

𝑑2𝑥 𝑡

𝑑𝑡2
=
𝑑𝑥 𝑡

𝑑𝑡

𝑑𝑥 𝑡

𝑑𝑡

อ
𝑑2𝑥 𝑡

𝑑𝑡2
𝑡=𝑛𝑇

=
𝑥 𝑛𝑇 − 2𝑥 𝑛𝑇 − 𝑇 + 𝑥 𝑛𝑇 − 2𝑇

𝑇2
→
𝑥 𝑛 − 2𝑥 𝑛 − 1 + 𝑥 𝑛 − 2

𝑇2
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IIR Filter Design from Derivatives

◼ Question: What is a second-derivative in discrete-time?

▪ In continuous-time

𝑑2𝑥 𝑡

𝑑𝑡2
→ 𝑠2𝑋 𝑠

▪ In discrete-time

𝑑2𝑥 𝑡

𝑑𝑡2
=
𝑑𝑥 𝑡

𝑑𝑡

𝑑𝑥 𝑡

𝑑𝑡

อ
𝑑2𝑥 𝑡

𝑑𝑡2
𝑡=𝑛𝑇

=
𝑥 𝑛𝑇 − 2𝑥 𝑛𝑇 − 𝑇 + 𝑥 𝑛𝑇 − 2𝑇

𝑇2
→
𝑥 𝑛 − 2𝑥 𝑛 − 1 + 𝑥 𝑛 − 2

𝑇2

ቤ
𝑑𝑥 𝑡

𝑑𝑡
𝑡=𝑛𝑇

→
1

𝑇2
1 − 2𝑧−1 + 𝑧−2 𝑋 𝑧 =

1

𝑇2
1 − 𝑧−1 2𝑋 𝑧
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IIR Filter Design from Derivatives

◼ Question: What is a derivative in discrete-time?

▪ Translate continuous-time to discrete-time

𝑑𝑘𝑥 𝑡

𝑑𝑡𝑘
→ 𝑠𝑘𝑋 𝑠

อ
𝑑𝑘𝑥 𝑡

𝑑𝑡𝑘
𝑡=𝑛𝑇

→
1

𝑇
1 − 𝑧−1 𝑘𝑋 𝑧
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IIR Filter Design from Derivatives

◼ Question: What is a derivative in discrete-time?

▪ Translate continuous-time to discrete-time

𝑑𝑘𝑥 𝑡

𝑑𝑡𝑘
→ 𝑠𝑘𝑋 𝑠

อ
𝑑𝑘𝑥 𝑡

𝑑𝑡𝑘
𝑡=𝑛𝑇

→
1

𝑇
1 − 𝑧−1 𝑘𝑋 𝑧

𝑠 →
1

𝑇
1− 𝑧−1

13



Lecture 28: Designing IIR FiltersFoundations of Digital Signal Processing

IIR Filter Design from Derivatives

◼ Example: 𝑠 →
1

𝑇
1 − 𝑧−1

▪ Use the derivative conversion to transform the following bi-quad 
filter into the discrete-time domain.  

𝐻 𝑠 =
1

𝑠 + 0.1 2 + 9

14



Lecture 28: Designing IIR FiltersFoundations of Digital Signal Processing

IIR Filter Design from Derivatives

◼ Example: 𝑠 →
1

𝑇
1 − 𝑧−1

▪ Use the derivative conversion to transform the following bi-quad 
filter into the discrete-time domain.  

𝐻 𝑠 =
1

𝑠 + 0.1 2 + 9

𝐻 𝑧 =
1

1
𝑇
1− 𝑧−1 + 0.1

2

+ 9

=
𝑇2

𝑇2
1
𝑇
1 − 𝑧−1 + 0.1

2

+ 9

=
𝑇2

1 − 𝑧−1 + 0.1𝑇
2
+ 9𝑇2

=
𝑇2

1+ 0.1𝑇 − 𝑧−1
2
+ 9𝑇2
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IIR Filter Design from Derivatives

◼ Example: 𝑠 →
1

𝑇
1 − 𝑧−1

▪ Use the derivative conversion to transform the following bi-quad 
filter into the discrete-time domain.  

𝐻 𝑠 =
1

𝑠 + 0.1 2 + 9

𝐻 𝑧 =
𝑇2

1+ 0.1𝑇 − 𝑧−1
2
+ 9𝑇2

1 + 0.1𝑇 − 𝑧−1
2
+ 9𝑇2 = 0

1 + 0.1𝑇 − 𝑧−1
2
= −9𝑇2

1 + 0.1𝑇 − 𝑧−1 = ±3𝑇𝑗

𝑧−1 = 1+ 0.1𝑇 ∓ 3𝑇𝑗 𝑧 =
1

1 + 0.1 ∓ 3𝑗 𝑇
16
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IIR Filter Design from Derivatives

◼ Example: 𝑠 →
1

𝑇
1 − 𝑧−1

▪ Use the derivative conversion to transform the following bi-quad 
filter into the discrete-time domain.  

𝑧 =
1

1 + 0.1 + 3𝑗 𝑇
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IIR Filter Design from Derivatives

◼ Example: 𝑠 →
1

𝑇
1 − 𝑧−1

𝑧 =
1

1+ 0.1 + 3𝑗 𝑇
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IIR Filter Design from Derivatives

◼ Question: What is a derivative in discrete-time?

▪ Translate continuous-time to discrete-time

𝑠 →
1

𝑇
1 − 𝑧−1

◼ Pros:

▪ Relatively simple

◼ Cons: 

▪ Very limiting

▪ Stable continuous-time poles can 
only be mapped to low frequencies

19
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Outline

• Designing IIR Filters with Discrete Differentiation

• Designing IIR Filters with Impulse Invariance

• Designing IIR Filters with the Bilinear Transform

• Related Analog Filters

Lecture 19: Design of IIR Filters
Foundations of Digital Signal Processing
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IIR Filter Design by Impulse Invariance

◼ Designing IIR Filters

▪ No easy ways to design digital IIR filters

▪ So let us start from analog filters

◼ Option 2: Preserve the impulse response!
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IIR Filter Design by Impulse Invariance

◼ Question: How else can I represent my transfer function? 

Partial-fraction decomposition

𝐻 𝑠 =෍

𝑘=1

𝐾
𝑐𝑘

𝑠 − 𝑝𝑘
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IIR Filter Design by Impulse Invariance

◼ Question: How else can I represent my transfer function? 

𝐻 𝑠 =෍

𝑘=1

𝐾
𝑐𝑘

𝑠 − 𝑝𝑘

ℎ 𝑡 =෍

𝑘=1

𝐾

𝑐𝑘𝑒
𝑝𝑘𝑡
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IIR Filter Design by Impulse Invariance

◼ Question: How else can I represent my transfer function? 

𝐻 𝑠 =෍

𝑘=1

𝐾
𝑐𝑘

𝑠 − 𝑝𝑘

ℎ 𝑡 =෍

𝑘=1

𝐾

𝑐𝑘𝑒
𝑝𝑘𝑡

ℎ 𝑛𝑇 = ℎ 𝑛 =෍

𝑘=1

𝐾

𝑐𝑘𝑒
𝑝𝑘𝑛𝑇 =෍

𝑘=1

𝐾

𝑐𝑘 𝑒𝑝𝑘𝑇 𝑛
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IIR Filter Design by Impulse Invariance

◼ Question: How else can I represent my transfer function? 

𝐻 𝑠 =෍

𝑘=1

𝐾
𝑐𝑘

𝑠 − 𝑝𝑘
=෍

𝑘=1

𝐾

𝑐𝑘𝑒
𝑝𝑘𝑡

ℎ 𝑡 =෍

𝑘=1

𝐾

𝑐𝑘𝑒
𝑝𝑘𝑡

ℎ 𝑛𝑇 = ℎ 𝑛 =෍

𝑘=1

𝐾

𝑐𝑘𝑒
𝑝𝑘𝑛𝑇 =෍

𝑘=1

𝐾

𝑐𝑘 𝑒𝑝𝑘𝑇 𝑛

𝐻 𝑧 =෍

𝑘=1

𝐾
𝑐𝑘

1 − 𝑒𝑝𝑘𝑇𝑧−1
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IIR Filter Design from Derivatives

◼ Example: 𝐻 𝑧 = σ𝑘=1
𝐾 𝑐𝑘

1−𝑒𝑝𝑘𝑇𝑧−1

▪ Use impulse invariance to transform the following biquad filter into 
the discrete-time domain.  

𝐻 𝑠 =
1

𝑠 + 0.1 2 + 9
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IIR Filter Design from Derivatives

◼ Example: 𝐻 𝑧 = σ𝑘=1
𝐾 𝑐𝑘

1−𝑒𝑝𝑘𝑇𝑧−1

▪ Use impulse invariance to transform the following biquad filter into 
the discrete-time domain.  

𝐻 𝑠 =
1

𝑠 + 0.1 2 + 9

Poles:

𝑠 + 0.1 2 + 9 = 0

𝑠 = ±3𝑗 − 0.1
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IIR Filter Design from Derivatives

◼ Example: 𝐻 𝑧 = σ𝑘=1
𝐾 𝑐𝑘

1−𝑒𝑝𝑘𝑇𝑧−1

▪ Use impulse invariance to transform the following biquad filter into 
the discrete-time domain.  

𝐻 𝑠 =
1

𝑠 + 0.1 2 + 9
=

1/2

𝑠 + 3𝑗 + 0.1
+

1/2

𝑠 − 3𝑗 + 0.1

Poles:

𝑠 + 0.1 2 + 9 = 0

𝑠 = ±3𝑗 − 0.1
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IIR Filter Design from Derivatives

◼ Example: 𝐻 𝑧 = σ𝑘=1
𝐾 𝑐𝑘

1−𝑒𝑝𝑘𝑇𝑧−1

▪ Use impulse invariance to transform the following biquad filter into 
the discrete-time domain.  

𝐻 𝑠 =
1

𝑠 + 0.1 2 + 9
=

1/2

𝑠 + 3𝑗 + 0.1
+

1/2

𝑠 − 3𝑗 + 0.1

𝑝𝑘 = ±3𝑗 − 0.1

𝐻 𝑠 → ℎ 𝑡 → ℎ 𝑛𝑇 → 𝐻(𝑧)

𝐻 𝑧 =
1/2

1 − 𝑒 −3𝑗−0.1 𝑇𝑧−1
+

1/2

1 − 𝑒 3𝑗−0.1 𝑇𝑧−1

29
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IIR Filter Design from Derivatives

◼ Example: 𝐻 𝑧 = σ𝑘=1
𝐾 𝑐𝑘

1−𝑒𝑝𝑘𝑇𝑧−1

𝐻 𝑧 =
1/2

1 − 𝑒 −3𝑗−0.1 𝑇𝑧−1

+
1/2

1 − 𝑒 3𝑗−0.1 𝑇𝑧−1
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Outline

• Designing IIR Filters with Discrete Differentiation

• Designing IIR Filters with Impulse Invariance

• Designing IIR Filters with the Bilinear Transform

• Related Analog Filters

Lecture 19: Design of IIR Filters
Foundations of Digital Signal Processing
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IIR Filter Design by Bilinear Transform

◼ Designing IIR Filters

▪ No easy ways to design digital IIR filters

▪ So let us start from analog filters

◼ Option 3: Preserve the definition of z!
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IIR Filter Design by Bilinear Transform

◼ Question: How are z and s related? 

▪ From continuous-time to discrete-time

𝑠 = 𝑗Ω

𝑒𝑠𝑡 = 𝑒𝑠𝑛𝑇 = 𝑧𝑛

𝑧 = 𝑒𝑠𝑇

▪ Building an approximation (𝑒𝑥 ≈ 1+ 𝑥) 

𝑧 =
𝑒
𝑠𝑇
2

𝑒−
𝑠𝑇
2

≈
1+ 𝑠𝑇/2

1 − 𝑠𝑇/2

33

Taylor Series 
Expansion / Approximation
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IIR Filter Design by Bilinear Transform

◼ Question: How are z and s related? 

▪ From continuous-time to discrete-time

𝑠 = 𝑗Ω

𝑒𝑠𝑡 = 𝑒𝑠𝑛𝑇 = 𝑧𝑛

𝑧 = 𝑒𝑠𝑇 𝑠 =
1

𝑇
ln 𝑧

▪ Building an approximation

𝑠 ≈
2

𝑇

𝑧 − 1

𝑧 + 1

34

Bilinear
Expansion / Approximation
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IIR Filter Design by Bilinear Transform

◼ The Bilinear Transform

Continuous-time to discrete-time

𝑠 →
2

𝑇

1 − 𝑧−1

1 + 𝑧−1

Discrete-time to continuous-time

𝑧 →
1+ 𝑠𝑇/2

1 − 𝑠𝑇/2
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IIR Filter Design by Bilinear Transform

◼ Example: 𝑠 →
2

𝑇

1−𝑧−1

1+𝑧−1
, 𝑧 →

1+𝑠𝑇/2

1−𝑠𝑇/2

▪ Use the bilinear transform to transform the following biquad filter 
into the discrete-time domain.  

𝐻 𝑠 =
1

𝑠 + 0.1 2 + 9
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IIR Filter Design by Bilinear Transform

◼ Example: 𝑠 →
2

𝑇

1−𝑧−1

1+𝑧−1
, 𝑧 →

1+𝑠𝑇/2

1−𝑠𝑇/2

▪ Use the bilinear transform to transform the following biquad filter 
into the discrete-time domain.  

𝐻 𝑠 =
1

𝑠 + 0.1 2 + 9

𝐻 𝑧 =
1

2
𝑇
1 − 𝑧−1

1 + 𝑧−1
+ 0.1

2

+ 9

=
1+ 𝑧−1 2

2
𝑇
1 − 𝑧−1 + 0.1

2

+ 9 1+ 𝑧−1 2
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IIR Filter Design by Bilinear Transform

◼ Example: 𝑠 →
2

𝑇

1−𝑧−1

1+𝑧−1
, 𝑧 →

1+𝑠𝑇/2

1−𝑠𝑇/2

𝐻 𝑧 =
1+ 𝑧−1 2

2
𝑇
1− 𝑧−1 + 0.1

2

+ 9 1+ 𝑧−1 2
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Outline

• Designing IIR Filters with Discrete Differentiation

• Designing IIR Filters with Impulse Invariance

• Designing IIR Filters with the Bilinear Transform

• Related Analog Filters

Lecture 19: Design of IIR Filters
Foundations of Digital Signal Processing
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Multi-pole Filters

◼ Butterworth: Maximally flat passband

◼ Chebyshev: Faster cutoff with passband ripple

◼ Elliptic: Fastest cutoff with passband and stopband ripple
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Butterworth Filter

◼ Butterworth Filter of order N

41

𝐻 𝑗𝜔 =
1

σ𝑘=1
𝑁 𝑠 − 𝑠𝑘 𝑠𝑘 = 𝑒

𝑗 2𝑘+𝑁−1 𝜋
2𝑁
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Butterworth Filter

◼ Butterworth Filter of order N

▪ N equally spaced poles on a circle on the left-hand-side of the s-
plane
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Butterworth Filter

◼ Properties of the Butterworth Filter

▪ It is maximally flat at 𝜔 = 0

▪ It has a cutoff frequency 𝐻 𝜔 =
1

2
at 𝜔 = 𝜔𝑐

▪ For large 𝑛, it becomes an ideal filter
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Chebyshev Filter

◼ Chebyshev Filter of order N
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𝐻 𝑗𝜔 =
1

1 + 𝜖2𝐶𝑛
2 𝜔

𝐶𝑛
2 𝜔 is an nth-order Chebyshev Polynomial 𝜖2 controls ripple
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Chebyshev Filter

◼ Chebyshev Filter of order N
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Chebyshev Filter

◼ Properties of the Chebyshev Filter

▪ It has ripples in the passband and is smooth in the stopband.

▪ The ratio between the maximum and minimum ripples in the 
passband is 

(1 + 𝜖2) − 1/2

▪ If ϵ is reduced (i.e., the ripple size is reduced), then the stopband 
attenuation is reduced.

▪ It has a sharper cut-off than a Butterworth filter, but at the 
expense of passband rippling
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Elliptic Filter

◼ Elliptic Filter of order N
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𝐻 𝑗𝜔 =
1

1 + 𝜖2𝑅𝑛
2 𝜔

𝑅𝑛
2 𝜔 is an nth-order elliptic function 𝜖2 controls ripple
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Elliptic Filter

◼ Elliptic Filter of order N
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Elliptic Filter

◼ Properties of the Elliptic Filter

▪ It has ripples in the passband and the stopband

▪ The ratio between the maximum and minimum ripples is larger 
than the Chebyshev filter, but it has an even quicker transition 
from passband to stopband

▪ It has poles and zeros, but they are much more difficult to compute 
compared with the Butterworth and Chebyshev filters
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