Lecture 28: Design of lIR Filters

Foundations of Digital Signal Processing

Outline
Designing lIR Filters with Discrete Differentiation
Designing lIR Filters with Impulse Invariance
Designing lIR Filters with the Bilinear Transform

Related Analog Filters
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IR Filter Design from Derivatives

m Designing lIR Filters
= No easy ways to design digital IIR filters

= So let us start from analog filters

Lecture 28: Designing IR Filters



IR Filter Design from Derivatives

m Designing lIR Filters
= No easy ways to design digital IIR filters

= So let us start from analog filters

m Option 1: Preserve the difference equation!
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IR Filter Design from Derivatives

m Question: What is a derivative in discrete-time?
= |n continuous-time
dx(t)
dt

— sX(s)

= |n discrete-time
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IR Filter Design from Derivatives

m Question: What is a derivative in discrete-time?

" |n continuous-time
dx(t)

X
7~ SX(s)

= |n discrete-time

dx(t)  x(t) —x(t—AT) T=1
a o AT /
dx(t) x(nT) —x(nT —T)
7t . = r = x|n] — x|n — 1]
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IR Filter Design from Derivatives

m Question: What is a derivative in discrete-time?

" |n continuous-time
dx(t)
dt

— sX(s)

= |n discrete-time
dx(t) | x(t) — x(t — AT)

dt  ATS0 AT
dx(t) x(nT) —x(nT—-T) 1
= ) =~ (el = xfn — 1])

t=nT
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IR Filter Design from Derivatives

m Question: What is a derivative in discrete-time?

" |n continuous-time

dx(t)
dt

— sX(s)

= |n discrete-time

dx(t)
dt
dx(t)

x(t) — x(t — AT)

= |lim
AT—0 AT

_x(nT) —x(nT—-T) 1

T

- 1—-z"HX
- (1= 27X ()

= = (el — x[n — 1)
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IR Filter Design from Derivatives

m Question: What is a second-derivative in discrete-time?

" |n continuous-time

" |n discrete-time

d?x(t) dx(t) [dx(t)
dtz  dt dt

dx(t) x(nT) —x(nT —T)
dt B T

t=nT
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IR Filter Design from Derivatives

® Question: What is a second-derivative in discrete-time?

" |n continuous-time

= |n discrete-time
d*x(t)  dx(t) [dx(t)
dt>2  dt | dt

[x(nT) —x(nT —T)]/T — |[x(nT —T) — x(nT — 2T)]/T
T

d?x(t)
dt?

t=nT
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IR Filter Design from Derivatives

® Question: What is a second-derivative in discrete-time?

" |n continuous-time

= |n discrete-time
d*x(t)  dx(t) [dx(t)
dt>2  dt | dt

_ x(nT) — 2x(nT —T) + x(nT — 2T) x[n] — 2x[n — 1] + x[n — 2]
- T2 ~ T2

d?x(t)
dt?

t=nT
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IR Filter Design from Derivatives

® Question: What is a second-derivative in discrete-time?

" |n continuous-time

= |n discrete-time

d*x(t)  dx(t) [dx(t)
dt2  dt | dt

d?x(t) _x(nT) = 2x(nT —T) + x(nT = 2T)  x[n] — 2x[n — 1] + x[n — 2]
dt? - T2 ~ T2
t=nT
dx@| 1 R _1 12
o . 7 (1-2z""4+z79)X(z) = 5 (1—-z"YH°X(2)
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IR Filter Design from Derivatives

m Question: What is a derivative in discrete-time?

* Translate continuous-time to discrete-time

k
ddiit) - s°X(s)
k
dd):f) - (1 z7*X(2)
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IR Filter Design from Derivatives

m Question: What is a derivative in discrete-time?

* Translate continuous-time to discrete-time

d*x(t)
%
dtk T
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IR Filter Design from Derivatives

m Example: s - %(1 —z 1

= Use the derivative conversion to transform the following bi-quad
filter into the discrete-time domain.
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IR Filter Design from Derivatives

m Example: s - %(1 —z 1

= Use the derivative conversion to transform the following bi-quad
filter into the discrete-time domain.

1 T?

(% (1—2z"1) + 0.1)2 +9 T2 [(% (1—2z"1) + 0.1)2 + 9]

Tz TZ
B ((1 —z )+ 0.1T)2 + 9T2 - ((1 + 0.17) — z—l)z + 9T2
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IR Filter Design from Derivatives

m Example: s - %(1 —z 1

= Use the derivative conversion to transform the following bi-quad
filter into the discrete-time domain.

T2 Finding poles
H(z) = 5
((1401T) — z71)" + 972

(1+01T) — 2z~ )  +9T2 =0

((1+01T) — z71)* = —972
(14 0.1T) — 7z~ = 43T
1
1+ (01F3)T

z7t=(1+0.1T) ¥ 3Tj Z
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IR Filter Design from Derivatives

m Example: s - %(1 —z 1

= Use the derivative conversion to transform the following bi-quad
filter into the discrete-time domain.

1
“TI1+1+3)T

Poles
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IR Filter Design from Derivatives

1 —
m Example:s >~ (1 —z7") | T= 001
1 3
Z = - By 0 frorrb Lo " JENRE
1+(0.1+3))T g
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IR Filter Design from Derivatives

m Question: What is a derivative in discrete-time?

* Translate continuous-time to discrete-time

= (1-2z71)
% —_— —_—
S z

Stable IIR
analog filters
map here

®m Pros:

= Relatively simple

m Cons:

= Very limiting

= Stable continuous-time poles can
only be mapped to low frequencies
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Foundations of Digital Signal Processing

Outline
Designing lIR Filters with Discrete Differentiation
Designing lIR Filters with Impulse Invariance
Designing lIR Filters with the Bilinear Transform

Related Analog Filters
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IR Filter Design by Impulse Invariance

m Designing lIR Filters
= No easy ways to design digital IIR filters

= So let us start from analog filters

m Option 2: Preserve the impulse response!
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IR Filter Design by Impulse Invariance

m Question: How else can | represent my transfer function?

Partial-fraction decomposition
K

A(s) = z S ikpk

k=1

Lecture 28: Designing IIR Filters



IR Filter Design by Impulse Invariance

m Question: How else can | represent my transfer function?
K

H(s) = z S ikpk

k=1
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IR Filter Design by Impulse Invariance

m Question: How else can | represent my transfer function?

K
H(s) = z - f"pk
k=1
K
h(t) = z ciePkt
k=1
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IR Filter Design by Impulse Invariance

m Question: How else can | represent my transfer function?
K K

C
H(s) = z _k = 2 crePrt
=1 P =
K
h(t) = Z crePkt
k=1
K K
h(nT) = hn] = Z ¢, ePkl = z i [ePKT]™
k=1 k=1
K
Ck
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IR Filter Design from Derivatives

K Ck
k=1 l_ekaZ—l

m Example: H(z) =

= Use impulse invariance to transform the following biquad filter into
the discrete-time domain.

1
(s+0.1)2%2+9

H(s) =
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IR Filter Design from Derivatives

K Ck
k=1 1_ekaZ—1

m Example: H(z) =

= Use impulse invariance to transform the following biquad filter into
the discrete-time domain.

1
(s+0.1)2%2+9

H(s) =

Poles:
(s+0.1)*+9=0
s=43j—0.1

Lecture 28: Designing IR Filters



IR Filter Design from Derivatives

K Ck
k=1 1_ekaZ—1

m Example: H(z) =

= Use impulse invariance to transform the following biquad filter into
the discrete-time domain.

1 12 . 1/2
(s+01)2+9 s+3j+01 s—3j+0.1

H(s) =

Poles:
(s+0.1)%+9=0
s=43j—0.1
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IR Filter Design from Derivatives

: _ VK Ck
m Example: H(z) = ).;—¢ PRI g

= Use impulse invariance to transform the following biquad filter into
the discrete-time domain.

1 1/2 1/2
H(S) — o - + .
(s+01)*+9 s+3j+01 s-—3j+0.1
p, = +3j — 0.1
H(s) = h(t) » h(nT) - H(z)
1/2 1/2
H(Z) — 1 — e(_gj_o_l)TZ_l + 1 — e(3j—0.1)TZ—1

\

Pk
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IR Filter Design from Derivatives

K Ck

m Example: H(z) =

k=1 1—ePkT ;-1 1 T=l]l]1
H 1/2 =
(2) = 1 — e(=3j-0.1D)T ,-1 G O O
£
1/2 y B
_|_ - 2 1 0 1 2
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IR Filter Design by Bilinear Transform

m Designing lIR Filters
= No easy ways to design digital IIR filters

= So let us start from analog filters

= Option 3: Preserve the definition of z!
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IR Filter Design by Bilinear Transform

® Question: How are z and s related?

= From continuous-time to discrete-time

> 7 ]Q Taylor Series
eSt = ST — N Expansion / Approximation
7 = esT

= Building an approximation (e* = 1 + x)

sT
e 2 14 sT/2

7 = Tz —
e_ST 1—sT/2
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IR Filter Design by Bilinear Transform

® Question: How are z and s related?
= From continuous-time to discrete-time
s = jJQ

st — ,snT _ _n
e =e = Z Bilinear

1 Expansion / Approximation

z =e5T s = Tln(z) /

= Building an approximation
2z—1

S X —
Tz+1
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IR Filter Design by Bilinear Transform

m The Bilinear Transform

Continuous-time to discrete-time
21—2z"1

S > =

T1+2z1

Discrete-time to continuous-time
14 sT/2

1—sT/2

Z —
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IR Filter Design by Bilinear Transform

21-z"1 1+sT/2
m Example:s > —=————, z -
T1+z71 1—sT/2

= Use the bilinear transform to transform the following biquad filter
into the discrete-time domain.
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IR Filter Design by Bilinear Transform

21-z"1 1+sT/2
m Example:s > —=————, z -
T1+z71 1—sT/2

= Use the bilinear transform to transform the following biquad filter
into the discrete-time domain.

1
H —_—
) = G007 +9
1
H(z) = >
21—z-1
(T1+§-1+0'1) +9
(1+2z71)?

2 -1 ? —-1)2
(FA-z1+01) +9(1+27)
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IR Filter Design by Bilinear Transform

21-z"1 1+sT/2
m Example:s > ———, z > ——
T1+z71 1—sT/2
(1+2z71)?
H(z) = 5

(% (1—z71) +01) +9(1+z71)?
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Lecture 19: Design of lIR Filters

Foundations of Digital Signal Processing
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Designing lIR Filters with Impulse Invariance
Designing lIR Filters with the Bilinear Transform
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Multi-pole Filters

m Butterworth: Maximally flat passband
m Chebyshev: Faster cutoff with passband ripple

m Elliptic: Fastest cutoff with passband and stopband ripple
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Butterworth Filter

m Butterworth Filter of order N

1 i(2k+N-1)1
H(jw)| = _ K
1]!:1(5 — Sk) Sk = € 2N

Lecture 28: Designing IIR Filters



Butterworth Filter

m Butterworth Filter of order N

= N equally spaced poles on a circle on the left-hand-side of the s-

plane
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Butterworth Filter

m Properties of the Butterworth Filter
= |tis maximallyflatatw =0

1

V2

= Forlargen, it becomes an ideal filter

= |t has a cutoff frequency |H(w)| = =atw = w,

Lecture 28: Designing IR Filters



Chebyshev Filter

m Chebyshev Filter of order N

H(jw)] = ———

J1+€2C3(w)

C2(w) is an nth-order Chebyshev Polynomial €2 controls ripple

Lecture 28: Designing IIR Filters



Chebyshev Filter

m Chebyshev Filter of order N
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Chebyshev Filter

m Properties of the Chebyshev Filter

It has ripples in the passband and is smooth in the stopband.

The ratio between the maximum and minimum ripples in the
passband is

(1+€2)—1/2

If € is reduced (i.e., the ripple size is reduced), then the stopband
attenuation is reduced.

It has a sharper cut-off than a Butterworth filter, but at the
expense of passband rippling
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Elliptic Filter

m Elliptic Filter of order N

H(j)] = ———

J1+ €2R%(w)

R%(w) is an nth-order elliptic function €2 controls ripple
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Elliptic Filter

m Elliptic Filter of order N
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Elliptic Filter

m Properties of the Elliptic Filter
= |t has ripples in the passband and the stopband
= The ratio between the maximum and minimum ripples is larger

than the Chebyshev filter, but it has an even quicker transition
from passband to stopband

= |t has poles and zeros, but they are much more difficult to compute
compared with the Butterworth and Chebyshev filters
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