Question	\# of Points Possible	\# of Points Obtained	Grader
$\# 1$	17		
$\# 2$	17		
$\# 3$	16		
$\# 4$	16		
$\# 5$	18		
$\# 6$	16		
Total	100		

For full credit when sketching: remember to label axes and make locations and amplitudes clear.

Before starting the exam, read and sign the following agreement.
By signing this agreement, I agree to solve the problems of this exam while adhering to the policies and guidelines of the University of Florida and EEL 4750 / EEE 5502 and without additional external help. The guidelines include, but are not limited to,

- The University of Florida honor pledge: "On my honor, I have neither given nor received unauthorized aid in doing this assignment."
- Only one 8.5 by 11 inch cheat sheet (double-sided) may be used
- No calculators or computers may be used
- No textbooks or additional notes may be used
- No collaboration is allowed
- No cheating is allowed

Question \#1: Consider the DTFT of the signal $x[n]$ (i.e., $X(\omega)$) shown below.

(a) (9 pts) Sketch the DTFT (from $\omega=-3 \pi$ to $\omega=3 \pi$) of $x[n]$ after downsampling by 2 (with no anti-aliasing filter). Remember to label important locations / values.

Solution:

ω
(b) (8 pts) Sketch the DTFT (from $\omega=-3 \pi$ to $\omega=3 \pi$) of $x[n]$ after downsampling by 3 (with an anti-aliasing filter). Remember to label important locations / values.

Solution:

Question \#2: Consider the DTFT of the signal $x[n]$ (i.e., $X(\omega)$) shown below.

ω
(a) (9 pts) Sketch the DTFT (from $\omega=-3 \pi$ to $\omega=3 \pi$) of $x[n]$ after upsampling by 3 (with an interpolation filter). Remember to label important locations / values.

Solution:

ω
(b) (8 pts) Sketch the DTFT (from $\omega=-3 \pi$ to $\omega=3 \pi$) of $x[n]$ after upsampling by 2 (with no interpolation filter). Remember to label important locations / values.

Solution:

ω

Question \#3: Consider the desired frequency response

$$
H_{d a}(\omega)=\frac{e^{-j \omega}}{1-(1 / 2) e^{-j \omega}}+\frac{e^{+j \omega}}{1-(1 / 2) e^{+j \omega}} \quad, \quad H_{d b}(\omega)=\frac{1}{e^{+j 5 \omega}+e^{-j 5 \omega}}
$$

(a) (8 pts) Approximate $H_{d a}(\omega)$ with a length $N=5$ windowing method. Use a rectangular window. Force the resulting filter to be causal and linear phase. Sketch the timedomain filter coefficients $h_{a}[n]$ with these requirements.

Solution:

$$
h_{d}[n]=(1 / 2)^{n-1} u[n-1]+(1 / 2)^{-n-1} u[-n-1]
$$

After shifting by $(N-1) / 2=2$ samples to force casually and a linear phase, the solution is:

n
(b) (8 pts) Approximate $H_{d b}(\omega)$ with a length $N=5$ frequency sampling method. Force the resulting filter to be causal and linear phase. Compute the time-domain filter coefficients $h_{b}[n]$ with these requirements.

Solution: The frequency coefficients up to π are:

$$
\begin{aligned}
\omega_{0} & =0 & H_{d}(0) & =\frac{1}{1+1}=\frac{1}{2} \\
\omega_{1} & =\frac{2 \pi(1)}{5} & H_{d}(2 \pi / 5) & =\frac{1}{1+1}=\frac{1}{2} \\
\omega_{2} & =\frac{2 \pi(2)}{5} & H_{d}(4 \pi / 5) & =\frac{1}{1+1}=\frac{1}{2}
\end{aligned}
$$

Therefore,

$$
h_{b}[n]=\frac{1}{2}+\cos \left(\frac{2 \pi}{5}(n-2)\right)+\cos \left(\frac{4 \pi}{5}(n-2)\right) \quad \text { for } \quad 0 \leq n \leq 4
$$

Question \#4: Consider the desired filter transfer function

$$
H_{d}(s)=\frac{5}{s-j-1}+\frac{5}{s+j-1}
$$

(a) (8 pts) Approximate $H_{d}(s)$ as a discrete-time IIR filter by approximating the differential equation with a sampling rate $T=1$. Determine the resulting z-domain poles and zeros.

Solution: $s \rightarrow \frac{1}{T}\left(1-z^{-1}\right)$

$$
\begin{aligned}
H_{a}(z) & =\frac{5}{\left(1-z^{-1}\right)-j-1}+\frac{5}{\left(1-z^{-1}\right)+j-1} \\
& =\frac{5}{-j-z^{-1}}+\frac{5}{j-z^{-1}} \\
& =\frac{5\left(-j-z^{-1}+j-z^{-1}\right)}{\left(-j-z^{-1}\right)\left(j-z^{-1}\right)} \\
& =\frac{-10 z^{-1}}{\left(1+z^{-2}\right)}=\frac{-10 z}{\left(z^{2}+1\right)}
\end{aligned}
$$

poles: $z=-j, j$
zeros: $z=0, \infty$
(b) (8 pts) Approximate $H_{d}(s)$ as a discrete-time IIR filter using the impulse invariance method with a sampling rate $T=\pi$. Determine the resulting z-domain poles and zeros.

Solution: Poles: $s=j+1,-j+1$

$$
\begin{aligned}
H_{b}(z) & =\frac{5}{1-e^{(j+1)(\pi)} z^{-1}}+\frac{5}{1-e^{(-j+1)(\pi)} z^{-1}} \\
& =\frac{5}{1-e^{-j \pi+\pi} z^{-1}}+\frac{5}{1-e^{-j \pi+\pi} z^{-1}} \\
& =\frac{5}{1+e^{\pi} z^{-1}}+\frac{5}{1+e^{\pi} z^{-1}} \\
& =\frac{10}{1+e^{\pi} z^{-1}}=\frac{10 z}{z+e^{\pi}}
\end{aligned}
$$

poles: $z=-e^{\pi}$
zeros: $z=0$

Question \#5: Consider a 2-channel filter bank shown below.

Let the filters be defined by the impulse responses

$$
h_{0}[n]=g_{0}[-n]=\frac{1}{\sqrt{2}}(\delta[n]+\delta[n-1]) \quad, \quad h_{1}[n]=g_{1}[-n]=\frac{1}{\sqrt{2}}(\delta[n]-\delta[n-1])
$$

(a) (8 pts) Compute $v_{0}[n]$ (inverse z-transform of $V_{0}(z)$) for $X(z)=z^{-1}+z^{-2}$.

Solution: Solution via z-transform:

$$
\begin{aligned}
X(z) & =z^{-1}+z^{-2} \\
H_{0}(z) & =\frac{1}{\sqrt{2}}\left(1+z^{-1}\right) \\
G_{0}(z) & =\frac{1}{\sqrt{2}}\left(z^{+1}+1\right) \\
X_{0}(z) & =\frac{1}{\sqrt{2}}\left(z^{-1}+z^{-2}\right)\left(1+z^{-1}\right)=\frac{1}{\sqrt{2}}\left(z^{-1}+2 z^{-2}+z^{-3}\right) \\
Y_{0}(z) & =\frac{1}{2}\left[X_{0}\left(z^{1 / 2}\right)+X_{0}\left(-z^{1 / 2}\right)\right] \\
& =\frac{1}{2 \sqrt{2}}\left[\left(z^{-1 / 2}+2 z^{-2 / 2}+z^{-3 / 2}\right)+\left(-z^{-1 / 2}+2 z^{-2 / 2}+-z^{-3 / 2}\right)\right]=\frac{4}{2 \sqrt{2}} z^{-2 / 2} \\
Z_{0}(z) & =\frac{2}{\sqrt{2}} z^{-2} \\
V_{0}(z) & =z^{-1}+z^{-2}
\end{aligned}
$$

Solution via time domain:

(b) (5 pts) (True or False) Assuming orthogonal filter bank conditions are met, $V(z)$ does not change if we switch the downsampling and upsampling operations. Briefly justify why.

Solution: False. Short Answer: Switching the downsampling and upsampling operations changes the reconstruction conditions. Switching them cause each operation to cancel each other out. Hence, $V_{0}(z)=X_{0}(z)$ and $V_{0}(z)=X_{0}(z)$.

Long Answer: Mathematically, our old arrangement above would get

$$
\begin{aligned}
Y_{0}(z) & =\frac{1}{2}\left[X_{0}\left(z^{1 / 2}\right)+X_{0}\left(-z^{1 / 2}\right)\right] \\
Z_{0}(z) & =\frac{1}{2}\left[X_{0}(z)+X_{0}(-z)\right] \\
V_{0}(z) & =\frac{1}{2}\left[X_{0}(z)+X_{0}(-z)\right] G_{0}(z)
\end{aligned}
$$

Similarly,

$$
V_{1}(z)=\frac{1}{2}\left[X_{1}(z)+X_{1}(-z)\right] G_{1}(z)
$$

With the new arrangement, we will get

$$
\begin{aligned}
Y_{0}(z) & =X_{0}\left(z^{2}\right) \\
Z_{0}(z) & =\frac{1}{2}\left[X_{0}\left(\left(z^{1 / 2}\right)^{2}\right)+X_{0}\left(\left(-z^{1 / 2}\right)^{2}\right)\right] \\
& =\frac{1}{2}\left[X_{0}(z)+X_{0}(z)\right]=X_{0}(z) \\
V_{0}(z) & =X_{0}(z) G_{0}(z)
\end{aligned}
$$

Similarly,

$$
V_{1}(z)=X_{1}(z) G_{1}(z)
$$

So,

$$
\begin{aligned}
V(z) & =X_{0}(z) G_{0}(z)+X_{1}(z) G_{1}(z) \\
& =X_{0}(z)\left[H_{0}(z) G_{0}(z)+H_{1}(z) G_{1}(z)\right] \\
& =X_{0}(z)\left[H_{0}(z) H_{0}\left(z^{-1}\right)+H_{1}(z) H_{1}\left(z^{-1}\right)\right]
\end{aligned}
$$

This is a different $V(z)$ than in our original scenario.
(c) (5 pts) (True or False) Assuming orthogonal filter bank conditions are met, $V(z)$ does not change if we time-reverse every filter impulse response. Briefly justify why.

Solution: True. Short Answer: Switching filters does not change the reconstruction conditions, only the filters. Furthermore, since the right-hand side of the conditions is not dependent on z, changing $z \rightarrow z^{-1}$ does not change the result.

Long Answer: The orthogonal filter bank conditions are typically

$$
\begin{aligned}
& H_{0}(z) H_{0}\left(z^{-1}\right)+H_{0}(-z) H_{0}\left(-z^{-1}\right)=2 \\
& H_{1}(z) H_{1}\left(z^{-1}\right)+H_{1}(-z) H_{1}\left(-z^{-1}\right)=2 \\
& H_{0}(z) H_{1}\left(z^{-1}\right)+H_{0}(-z) H_{1}\left(-z^{-1}\right)=0
\end{aligned}
$$

The reconstruction condition now turns into

$$
\begin{aligned}
& H_{0}\left(z^{-1}\right) H_{0}(z)+H_{0}\left(-z^{-1}\right) H_{0}(-z)=2 \\
& H_{1}\left(z^{-1}\right) H_{1}(z)+H_{1}\left(-z^{-1}\right) H_{1}(-z)=2 \\
& H_{0}\left(z^{-1}\right) H_{1}(z)+H_{0}\left(-z^{-1}\right) H_{1}(-z)=0
\end{aligned}
$$

and remains satisfied.

Question \#6: Consider the following wavelet bank and filter bank.

Let $H(z)$ and $G(z)$ be defined by the transfer functions:

$$
H(z)=1 \quad, \quad G(z)=z^{-1}
$$

(a) (6 pts) Use the Noble identities to simplify the wavelet bank (left) and represent it as a filter bank (right). Determine $M_{1}, M_{2}, M_{3}, F_{1}(z), F_{2}(z), F_{3}(z)$. Fully simplify.

Solution: $M_{1}=2, M_{2}=4, M_{3}=4$.

$$
\begin{aligned}
& F_{1}(\omega)=H(z)=1 \\
& F_{2}(\omega)=G(z) H\left(z^{2}\right)=z^{-1} \\
& F_{3}(\omega)=G(z) G\left(z^{2}\right)=z^{-3}
\end{aligned}
$$

(b) (10 pts) Let $x[n]=\delta[n]+2 \delta[n-1]+3 \delta[n-2]+4 \delta[n-3]+5 \delta[n-4]$. Sketch $\beta^{(1)}[n], \beta^{(2)}[n]$, $\alpha^{(2)}[n]$ (the inverse z-transforms of $\beta^{(1)}(z), \beta^{(2)}(z)$, and $\alpha^{(2)}(z)$).

Solution:

$$
\begin{aligned}
& \beta^{(1)}[n]=\delta[n]+3 \delta[n-1] \\
& \beta^{(2)}[n]=2 \delta[n-1] \\
& \alpha^{(2)}[n]=4 \delta[n-1]
\end{aligned}
$$

Table of Discrete-Time Fourier Transform Pairs:

$$
\begin{array}{r}
\text { Discrete-Time Fourier Transform }: \quad X(\omega)=\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega n} \\
\text { Inverse Discrete-Time Fourier Transform }
\end{array}
$$

$x[n]$	$X(\omega)$	condition
$a^{n} u[n]$	$\frac{1}{1-a e^{-j \omega}}$	$\|a\|<1$
$(n+1) a^{n} u[n]$	$\frac{1}{\left(1-a e^{-j \omega}\right)^{2}}$	$\|a\|<1$
$\frac{(n+r-1)!}{n!(r-1)!} a^{n} u[n]$	$\frac{1}{\left(1-a e^{-j \omega}\right)^{r}}$	$\|a\|<1$
$\delta[n]$	1	
$\delta\left[n-n_{0}\right]$	$e^{-j \omega n_{0}}$	
$x[n]=1$	$2 \pi \sum_{k=-\infty}^{\infty} \delta(\omega-2 \pi k)$	
$u[n]$	$\frac{1}{1-e^{-j \omega}}+\sum_{k=-\infty}^{\infty} \pi \delta(\omega-2 \pi k)$	
$e^{j \omega_{0} n}$	$2 \pi \sum_{k=-\infty}^{\infty} \delta\left(\omega-\omega_{0}-2 \pi k\right)$	
$\cos \left(\omega_{0} n\right)$	$\pi \sum_{k=-\infty}^{\infty}\left\{\delta\left(\omega-\omega_{0}-2 \pi k\right)+\delta\left(\omega+\omega_{0}-2 \pi k\right)\right\}$	
$\sin \left(\omega_{0} n\right)$	$\frac{\pi}{j} \sum_{k=-\infty}^{\infty}\left\{\delta\left(\omega-\omega_{0}-2 \pi k\right)-\delta\left(\omega+\omega_{0}-2 \pi k\right)\right\}$	
$\sum_{k=-\infty}^{\infty} \delta[n-k N]$	$\frac{2 \pi}{N} \sum_{k=-\infty}^{\infty} \delta\left(\omega-\frac{2 \pi k}{N}\right)$	
$x[n]= \begin{cases}1 & , \quad\|n\| \leq N \\ 0 & , \quad\|n\|>N\end{cases}$	$\frac{\sin (\omega(N+1 / 2))}{\sin (\omega / 2)}$	
$\frac{\sin (W n)}{\pi n}=\frac{W}{\pi} \operatorname{sinc}\left(\frac{W n}{\pi}\right)$	$X(\omega)= \begin{cases}1 & , \quad 0 \leq\|\omega\| \leq W \\ 0 & , \quad W<\|\omega\| \leq \pi\end{cases}$	
	$X(\omega)$ is periodic with period 2π	

Table of Discrete-Time Fourier Transform Properties: For each property, assume

	$x[n] \stackrel{D T F T}{\longleftrightarrow} X(\omega)$ and $y[n] \stackrel{D T F T}{\longleftrightarrow} Y(\omega)$	
Property	Time domain	DTFT domain
Linearity	$A x[n]+B y[n]$	$A X(\omega)+B Y(\omega)$
Time Shifting	$x\left[n-n_{0}\right]$	$X(\omega) e^{-j \omega n_{0}}$
Frequency Shifting	$x[n] e^{j \omega_{0} n}$	$X\left(\omega-\omega_{0}\right)$
Conjugation	$x^{*}[n]$	$X^{*}(-\omega)$
Time Reversal	$x[-n]$	$X(-\omega)$
Convolution	$x[n] * y[n]$	$X(\omega) Y(\omega)$
Multiplication	$x[n] y[n]$	$\frac{1}{2 \pi} \int_{2 \pi} X(\theta) Y(\omega-\theta) d \theta$
Differencing in Time	$x[n]-x[n-1]$	$\left(1-e^{-j \omega}\right) X(\omega)$
Accumulation	$\sum_{k=-\infty}^{\infty} x[k]$	$\frac{1}{1-e^{-j \omega}+\pi X(0) \sum_{k=-\infty}^{\infty} \delta(\omega-2 \pi k)}$
Frequency Differentiation	$n x[n]$	$j \frac{d X(\omega)}{d \omega}$
Parseval's Relation for Aperiodic Signals	$\sum_{k=-\infty}^{\infty}\|x[k]\|^{2}$	$\frac{1}{2 \pi} \int_{2 \pi}\|X(\omega)\|^{2} d \omega$

Table of Z-Transform Pairs:

$$
\begin{aligned}
\text { Z-Transform } & : X(z)=\sum_{n=-\infty}^{\infty} x[n] z^{-n} \\
\text { Inverse Z-Transform } & : \quad x[n]=\frac{1}{2 \pi j} \oint_{\mathcal{C}} X(z) z^{n-1} d z
\end{aligned}
$$

$x[n]$	$X(\omega)$	ROC
$a^{n} u[n]$	$\frac{1}{1-a z^{-1}}$	$\|z\|>\|a\|$
$-a^{n} u[-n-1]$	$\frac{1}{1-a z^{-1}}$	$\|z\|<\|a\|$
$n a^{n} u[n]$	$\frac{a z^{-1}}{\left(1-a z^{-1}\right)^{2}}$	$\|z\|>\|a\|$
$-n a^{n} u[-n-1]$	$\frac{a z^{-1}}{\left(1-a z^{-1}\right)^{2}}$	$\|z\|<\|a\|$
$\delta[n]$	1	$\mathrm{All} z$
$\delta\left[n-n_{0}\right]$	$\frac{1}{1-z^{-1}}$	$\|z\|>1$
$u[n]$	$\frac{1-z^{-1} \cos \left(\omega_{0}\right)}{1-2 z^{-1} \cos \left(\omega_{0}\right)+z^{-2}}$	$\|z\|>1$
$\cos \left(\omega_{0} n\right) u[n]$		
$\sin \left(\omega_{0} n\right) u[n]$	$\frac{z^{-1} \sin \left(\omega_{0}\right)}{1-2 z^{-1} \cos \left(\omega_{0}\right)+z^{-2}}$	$\|z\|>1$
$a^{n} \cos \left(\omega_{0} n\right) u[n]$	$\frac{1-a z^{-1} \cos \left(\omega_{0}\right)}{1-2 a z^{-1} \cos \left(\omega_{0}\right)+a^{2} z^{-2}}$	$\|z\|>\|a\|$
$a^{n} \sin \left(\omega_{0} n\right) u[n]$	$\frac{a z^{-1} \sin \left(\omega_{0}\right)}{1-a 2 z^{-1} \cos \left(\omega_{0}\right)+a^{2} z^{-2}}$	$\|z\|>\|a\|$

Table of Z-Transform Properties: For each property, assume

$$
x[n] \stackrel{Z}{\longleftrightarrow} X(z) \quad \text { and } y[n] \stackrel{Z}{\longleftrightarrow} Y(z)
$$

Property	Time domain	Z-domain
Linearity	$A x[n]+B y[n]$	$A X(z)+B Y(z)$
Time Shifting	$x\left[n-n_{0}\right]$	$X(z) z^{-n_{0}}$
Z-scaling	$a^{n} x[n]$	$X\left(a^{-1} z\right)$
Conjugation	$x^{*}[n]$	$X^{*}\left(z^{*}\right)$
Time Reversal	$x[-n]$	$X\left(z^{-1}\right)$
Convolution	$x[n] * y[n]$	$X(z) Y(z)$
Differentiation in z-domain	$n x[n]$	$-z \frac{d X(z)}{d z}$
Initial Value Theorem	$x[n]$ is causal	$x(0)=\lim _{z \rightarrow \infty} X(z)$

