Full Name:	ExamID: 010001
EEL 4750 / EEE 5502 (Fall 2018) – Exam #03	Date: Dec. 4, 2018

Question	# of Points Possible	# of Points Obtained	Grader
# 1	17		
# 2	17		
# 3	16		
# 4	16		
# 5	18		
# 6	16		
Total	100		

For full credit when sketching: remember to label axes and make locations and amplitudes clear.

Before starting the exam, read and sign the following agreement.

By signing this agreement, I agree to solve the problems of this exam while adhering to the policies and guidelines of the University of Florida and EEL 4750 / EEE 5502 and without additional external help. The guidelines include, but are not limited to,

- The University of Florida honor pledge: "On my honor, I have neither given nor received unauthorized aid in doing this assignment."
- Only one 8.5 by 11 inch cheat sheet (double-sided) may be used
- No calculators or computers may be used
- No textbooks or additional notes may be used
- No collaboration is allowed
- No cheating is allowed

Student	Date	_

 ExamID: 010001
Date: Dec. 4, 2018

Question #1: Consider the DTFT of the signal x[n] (i.e., $X(\omega)$) shown below.

(a) (9 pts) Sketch the DTFT (from $\omega = -3\pi$ to $\omega = 3\pi$) of x[n] after downsampling by 2 (with no anti-aliasing filter). Remember to label important locations / values.

Solution:

(b) (8 pts) Sketch the DTFT (from $\omega = -3\pi$ to $\omega = 3\pi$) of x[n] after downsampling by 3 (with an anti-aliasing filter). Remember to label important locations / values.

Solution:

 ExamID: 010001
Date: Dec. 4, 2018

Question #2: Consider the DTFT of the signal x[n] (i.e., $X(\omega)$) shown below.

(a) (9 pts) Sketch the DTFT (from $\omega = -3\pi$ to $\omega = 3\pi$) of x[n] after upsampling by 3 (with an interpolation filter). Remember to label important locations / values.

Solution:

(b) (8 pts) Sketch the DTFT (from $\omega = -3\pi$ to $\omega = 3\pi$) of x[n] after upsampling by 2 (with no interpolation filter). Remember to label important locations / values.

Solution:

Question #3: Consider the desired frequency response

$$H_{da}(\omega) = \frac{e^{-j\omega}}{1 - (1/2)e^{-j\omega}} + \frac{e^{+j\omega}}{1 - (1/2)e^{+j\omega}}$$
, $H_{db}(\omega) = \frac{1}{e^{+j5\omega} + e^{-j5\omega}}$

(a) (8 pts) Approximate $H_{da}(\omega)$ with a length N=5 windowing method. Use a rectangular window. Force the resulting filter to be causal and linear phase. Sketch the time-domain filter coefficients $h_a[n]$ with these requirements.

Solution:

$$h_d[n] = (1/2)^{n-1}u[n-1] + (1/2)^{-n-1}u[-n-1]$$

After shifting by (N-1)/2=2 samples to force casually and a linear phase, the solution is:

(b) (8 pts) Approximate $H_{db}(\omega)$ with a length N=5 frequency sampling method. Force the resulting filter to be causal and linear phase. Compute the time-domain filter coefficients $h_b[n]$ with these requirements.

Solution: The frequency coefficients up to π are:

$$\omega_0 = 0 H_d(0) = \frac{1}{1+1} = \frac{1}{2}$$

$$\omega_1 = \frac{2\pi(1)}{5} H_d(2\pi/5) = \frac{1}{1+1} = \frac{1}{2}$$

$$\omega_2 = \frac{2\pi(2)}{5} H_d(4\pi/5) = \frac{1}{1+1} = \frac{1}{2}$$

Therefore,

$$h_b[n] = \frac{1}{2} + \cos\left(\frac{2\pi}{5}(n-2)\right) + \cos\left(\frac{4\pi}{5}(n-2)\right)$$
 for $0 \le n \le 4$

4

Date: Dec. 4, 2018

Question #4: Consider the desired filter transfer function

$$H_d(s) = \frac{5}{s - j - 1} + \frac{5}{s + j - 1}$$

(a) (8 pts) Approximate $H_d(s)$ as a discrete-time IIR filter by approximating the differential equation with a sampling rate T=1. Determine the resulting z-domain poles and zeros.

Solution: $s \to \frac{1}{T}(1-z^{-1})$

$$H_a(z) = \frac{5}{(1-z^{-1}) - j - 1} + \frac{5}{(1-z^{-1}) + j - 1}$$

$$= \frac{5}{-j - z^{-1}} + \frac{5}{j - z^{-1}}$$

$$= \frac{5(-j - z^{-1} + j - z^{-1})}{(-j - z^{-1})(j - z^{-1})}$$

$$= \frac{-10z^{-1}}{(1 + z^{-2})} = \frac{-10z}{(z^2 + 1)}$$

poles: z = -j, jzeros: $z = 0, \infty$

(b) (8 pts) Approximate $H_d(s)$ as a discrete-time IIR filter using the impulse invariance method with a sampling rate $T = \pi$. Determine the resulting z-domain poles and zeros.

Solution: Poles: s = j + 1, -j + 1

$$\begin{split} H_b(z) &= \frac{5}{1 - e^{(j+1)(\pi)}z^{-1}} + \frac{5}{1 - e^{(-j+1)(\pi)}z^{-1}} \\ &= \frac{5}{1 - e^{-j\pi + \pi}z^{-1}} + \frac{5}{1 - e^{-j\pi + \pi}z^{-1}} \\ &= \frac{5}{1 + e^{\pi}z^{-1}} + \frac{5}{1 + e^{\pi}z^{-1}} \\ &= \frac{10}{1 + e^{\pi}z^{-1}} = \frac{10z}{z + e^{\pi}} \end{split}$$

 $\begin{array}{ll} \text{poles: } z=-e^{\pi} \\ \text{zeros: } z=0 \end{array}$

EEL 4750 / EEE 5502 (Fall 2018) - Exam #03

Question #5: Consider a 2-channel filter bank shown below.

Let the filters be defined by the impulse responses

$$h_0[n] = g_0[-n] = \frac{1}{\sqrt{2}}(\delta[n] + \delta[n-1])$$
 , $h_1[n] = g_1[-n] = \frac{1}{\sqrt{2}}(\delta[n] - \delta[n-1])$

(a) (8 pts) Compute $v_0[n]$ (inverse z-transform of $V_0(z)$) for $X(z)=z^{-1}+z^{-2}$.

Solution: Solution via z-transform:

$$X(z) = z^{-1} + z^{-2}$$

$$H_0(z) = \frac{1}{\sqrt{2}}(1+z^{-1})$$

$$G_0(z) = \frac{1}{\sqrt{2}}(z^{+1} + 1)$$

$$X_0(z) = \frac{1}{\sqrt{2}}(z^{-1} + z^{-2})(1+z^{-1}) = \frac{1}{\sqrt{2}}(z^{-1} + 2z^{-2} + z^{-3})$$

$$Y_0(z) = \frac{1}{2}\left[X_0(z^{1/2}) + X_0(-z^{1/2})\right]$$

$$= \frac{1}{2\sqrt{2}}\left[\left(z^{-1/2} + 2z^{-2/2} + z^{-3/2}\right) + \left(-z^{-1/2} + 2z^{-2/2} + -z^{-3/2}\right)\right] = \frac{4}{2\sqrt{2}}z^{-2/2}$$

$$Z_0(z) = \frac{2}{\sqrt{2}}z^{-2}$$

$$V_0(z) = z^{-1} + z^{-2}$$

Solution via time domain:

EEL 4750 / EEE 5502 (Fall 2018) - Exam #03

ExamID: 010001

Date: Dec. 4, 2018

(b) (5 pts) (True or False) Assuming orthogonal filter bank conditions are met, V(z) does not change if we switch the downsampling and upsampling operations. Briefly justify why.

Solution: False. Short Answer: Switching the downsampling and upsampling operations changes the reconstruction conditions. Switching them cause each operation to cancel each other out. Hence, $V_0(z)=X_0(z)$ and $V_0(z)=X_0(z)$.

Long Answer: Mathematically, our old arrangement above would get

$$Y_0(z) = \frac{1}{2} \left[X_0(z^{1/2}) + X_0(-z^{1/2}) \right]$$

$$Z_0(z) = \frac{1}{2} \left[X_0(z) + X_0(-z) \right]$$

$$V_0(z) = \frac{1}{2} \left[X_0(z) + X_0(-z) \right] G_0(z)$$

Similarly,

$$V_1(z) = \frac{1}{2} [X_1(z) + X_1(-z)] G_1(z)$$

With the new arrangement, we will get

$$Y_0(z) = X_0(z^2)$$

$$Z_0(z) = \frac{1}{2} \left[X_0((z^{1/2})^2) + X_0((-z^{1/2})^2) \right]$$

$$= \frac{1}{2} \left[X_0(z) + X_0(z) \right] = X_0(z)$$

$$V_0(z) = X_0(z)G_0(z)$$

Similarly,

$$V_1(z) = X_1(z)G_1(z)$$

So,

$$V(z) = X_0(z)G_0(z) + X_1(z)G_1(z)$$

= $X_0(z) [H_0(z)G_0(z) + H_1(z)G_1(z)]$
= $X_0(z) [H_0(z)H_0(z^{-1}) + H_1(z)H_1(z^{-1})]$

This is a different V(z) than in our original scenario.

ExamID: 010001

Date: Dec. 4, 2018

(c) (5 pts) (True or False) Assuming orthogonal filter bank conditions are met, V(z) does not change if we time-reverse every filter impulse response. Briefly justify why.

Solution: True. Short Answer: Switching filters does not change the reconstruction conditions, only the filters. Furthermore, since the right-hand side of the conditions is not dependent on z, changing $z \to z^{-1}$ does not change the result.

Long Answer: The orthogonal filter bank conditions are typically

$$H_0(z)H_0(z^{-1}) + H_0(-z)H_0(-z^{-1}) = 2$$

$$H_1(z)H_1(z^{-1}) + H_1(-z)H_1(-z^{-1}) = 2$$

$$H_0(z)H_1(z^{-1}) + H_0(-z)H_1(-z^{-1}) = 0$$

The reconstruction condition now turns into

$$H_0(z^{-1})H_0(z) + H_0(-z^{-1})H_0(-z) = 2$$

$$H_1(z^{-1})H_1(z) + H_1(-z^{-1})H_1(-z) = 2$$

$$H_0(z^{-1})H_1(z) + H_0(-z^{-1})H_1(-z) = 0$$

and remains satisfied.

Question #6: Consider the following wavelet bank and filter bank.

Let H(z) and G(z) be defined by the transfer functions:

$$H(z) = 1$$
 , $G(z) = z^{-1}$

Use the Noble identities to simplify the wavelet bank (left) and represent it as a filter bank (right). Determine M_1 , M_2 , M_3 , $F_1(z)$, $F_2(z)$, $F_3(z)$. Fully simplify.

Solution: $M_1 = 2$, $M_2 = 4$, $M_3 = 4$.

$$F_1(\omega) = H(z) = 1$$

$$F_2(\omega) = G(z)H(z^2) = z^{-1}$$

$$F_2(\omega) = G(z)H(z^2) = z^{-1}$$

 $F_3(\omega) = G(z)G(z^2) = z^{-3}$

(b) (10 pts) Let $x[n] = \delta[n] + 2\delta[n-1] + 3\delta[n-2] + 4\delta[n-3] + 5\delta[n-4]$. Sketch $\beta^{(1)}[n]$, $\beta^{(2)}[n]$, $\alpha^{(2)}[n]$ (the inverse z-transforms of $\beta^{(1)}(z)$, $\beta^{(2)}(z)$, and $\alpha^{(2)}(z)$).

Solution:

$$\beta^{(1)}[n] = \delta[n] + 3\delta[n-1]$$

$$\beta^{(2)}[n] = 2\delta[n-1]$$

$$\alpha^{(2)}[n] = 4\delta[n-1]$$

Table of Discrete-Time Fourier Transform Pairs:

Discrete-Time Fourier Transform :
$$X(\omega) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$

Inverse Discrete-Time Fourier Transform : $x[n] = \frac{1}{2\pi} \int_{2\pi} X(\omega)e^{j\omega t} \ d\omega$.

x[n]	$X(\omega)$	condition
$a^n u[n]$	$rac{1}{1-ae^{-j\omega}}$	a < 1
$(n+1)a^nu[n]$	$\frac{1}{(1 - ae^{-j\omega})^2}$	a < 1
$\frac{(n+r-1)!}{n!(r-1)!}a^nu[n]$	$\frac{1}{(1 - ae^{-j\omega})^r}$	a < 1
$\delta[n]$	1	
$\delta[n-n_0]$	$e^{-j\omega n_0}$	
x[n] = 1	$2\pi \sum_{k=-\infty}^{\infty} \delta(\omega - 2\pi k)$	
u[n]	$\frac{1}{1 - e^{-j\omega}} + \sum_{k = -\infty}^{\infty} \pi \delta(\omega - 2\pi k)$	
$e^{j\omega_0 n}$	$2\pi \sum_{k=-\infty}^{\infty} \delta(\omega - \omega_0 - 2\pi k)$	
$\cos(\omega_0 n)$	$\pi \sum_{k=-\infty}^{\infty} \{\delta(\omega - \omega_0 - 2\pi k) + \delta(\omega + \omega_0 - 2\pi k)\}\$	
$\sin(\omega_0 n)$	$\frac{\pi}{j} \sum_{k=-\infty}^{\infty} \{ \delta(\omega - \omega_0 - 2\pi k) - \delta(\omega + \omega_0 - 2\pi k) \}$	
$\sum_{k=-\infty}^{\infty} \delta[n-kN]$	$\frac{2\pi}{N} \sum_{k=-\infty}^{\infty} \delta\left(\omega - \frac{2\pi k}{N}\right)$	
$x[n] = \begin{cases} 1 & , & n \le N \\ 0 & , & n > N \end{cases}$	$\frac{\sin(\omega(N+1/2))}{\sin(\omega/2)}$	
	$X(\omega) = \begin{cases} 1 & , & 0 \le \omega \le W \\ 0 & , & W < \omega \le \pi \end{cases}$	
	$X(\omega)$ is periodic with period 2π	

Table of Discrete-Time Fourier Transform Properties: For each property, assume

$$x[n] \overset{DTFT}{\longleftrightarrow} X(\omega)$$
 and $y[n] \overset{DTFT}{\longleftrightarrow} Y(\omega)$

Property	Time domain	DTFT domain
Linearity	Ax[n] + By[n]	$AX(\omega) + BY(\omega)$
Time Shifting	$x[n-n_0]$	$X(\omega)e^{-j\omega n_0}$
Frequency Shifting	$x[n]e^{j\omega_0n}$	$X(\omega-\omega_0)$
Conjugation	$x^*[n]$	$X^*(-\omega)$
Time Reversal	x[-n]	$X(-\omega)$
Convolution	x[n] * y[n]	$X(\omega)Y(\omega)$
Multiplication	x[n]y[n]	$\frac{1}{2\pi} \int_{2\pi} X(\theta) Y(\omega - \theta) d\theta$
Differencing in Time	x[n] - x[n-1]	$(1 - e^{-j\omega})X(\omega)$
Accumulation	$\sum_{k=-\infty}^{\infty} x[k]$	$\frac{1}{1-e^{-j\omega}} + \pi X(0) \sum_{k=-\infty}^{\infty} \delta(\omega - 2\pi k)$
Frequency Differentiation	nx[n]	$j\frac{dX(\omega)}{d\omega}$
Parseval's Relation for Aperiodic Signals	$\sum_{k=-\infty}^{\infty} x[k] ^2$	$\frac{1}{2\pi} \int_{2\pi} X(\omega) ^2 d\omega$

Table of Z-Transform Pairs:

Z-Transform :
$$X(z)=\sum_{n=-\infty}^{\infty}x[n]z^{-n}$$

 Inverse Z-Transform : $x[n]=\frac{1}{2\pi j}\oint_{\mathcal{C}}X(z)z^{n-1}\;dz$.

x[n]	$X(\omega)$	ROC
$a^n u[n]$	$\frac{1}{1 - az^{-1}}$	z > a
$-a^n u[-n-1]$	$\frac{1}{1 - az^{-1}}$	z < a
$na^nu[n]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z > a
$-na^nu[-n-1]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z < a
$\delta[n]$	1	All z
$\delta[n-n_0]$	z^{-n_0}	All z
u[n]	$\frac{1}{1-z^{-1}}$	z > 1
$\cos(\omega_0 n)u[n]$	$\frac{1 - z^{-1}\cos(\omega_0)}{1 - 2z^{-1}\cos(\omega_0) + z^{-2}}$	z > 1
$\sin(\omega_0 n)u[n]$	$\frac{z^{-1}\sin(\omega_0)}{1 - 2z^{-1}\cos(\omega_0) + z^{-2}}$	z > 1
$a^n \cos(\omega_0 n) u[n]$	$\frac{1 - az^{-1}\cos(\omega_0)}{1 - 2az^{-1}\cos(\omega_0) + a^2z^{-2}}$	z > a
$a^n \sin(\omega_0 n) u[n]$	$\frac{az^{-1}\sin(\omega_0)}{1 - a2z^{-1}\cos(\omega_0) + a^2z^{-2}}$	z > a

 Table of Z-Transform Properties:
 For each property, assume

$$x[n] \stackrel{Z}{\longleftrightarrow} X(z)$$
 and $y[n] \stackrel{Z}{\longleftrightarrow} Y(z)$

Property	Time domain	Z-domain
Linearity	Ax[n] + By[n]	AX(z) + BY(z)
Time Shifting	$x[n-n_0]$	$X(z)z^{-n_0}$
Z-scaling	$a^n x[n]$	$X(a^{-1}z)$
Conjugation	$x^*[n]$	$X^*(z^*)$
Time Reversal	x[-n]	$X(z^{-1})$
Convolution	x[n] * y[n]	X(z)Y(z)
Differentiation in z-domain	nx[n]	$-z\frac{dX(z)}{dz}$
Initial Value Theorem	x[n] is causal	$x(0) = \lim_{z \to \infty} X(z)$